
Course:

Advanced Nonlinear Programming – ISyE 7683 A

a.k.a.

Lectures on Modern Convex Optimization

• Instructor: Dr. Arkadi Nemirovski nemirovs@isye.gatech.edu,

Office hours (Zoom): Tuesday 10:00-12:00 in-person by appointment

Groseclose 446

You always can contact me by e-mail nemirovs@isye.gatech.edu and by

phone 404-429-1528 10:00am-9:00pm, except for time of our classes

• Teaching Assistant: None

• Classes: Monday & Wednesday 14:00-15:15 ISyE Main 228

• Pre-recorder Kaltura Lectures, Lecture Notes, Transparencies,

(Non-obligatory) Exercises: course site on Canvas and

https://www2.isye.gatech.edu/~nemirovs/LMCOLN2024Spring.pdf

https://www2.isye.gatech.edu/~nemirovs/LMCOTR2024Spring.pdf

https://www2.isye.gatech.edu/~nemirovs/LMCOEXERCISES.pdf

• Grading Policy:

Take Home Final Exam: 100%

Preface

A man searches for a lost wallet at the place where
the wallet was lost.
A wise man searches at a place with enough light...

♣ Where should we search for a wallet? Where is “enough light” – what

Optimization can do well?

The most straightforward answer is: we can solve well convex optimiza-

tion problems.

The very existence of what is called Mathematical Programming stemmed

from discovery of Linear Programming (George Dantzig, late 1940’s) –

a modeling methodology accompanied by extremely powerful in practice

(although “theoretically bad”) computational tool – Simplex Method.

Linear Programming, which is a special case of Convex Programming,

still underlies the majority of real life applications of Optimization, espe-

cially large-scale ones.

♠ When photography was invented in XIX Century, processing pictures

was very sophisticated and required skills and training.

• Kodak Company changed the situation completely by offering (1888)

centralized processing of films. Their slogan was

You press the button, we do the rest

♠ In the realm of Mathematical Programming, Convex Optimization is

the area most close to this slogan, with

“pressing the button” = creating convex optimization model of the prob-

lem at hand and feeding this model with necessary data

♣ Around mid-1970’s, it was shown that

• Linear and, more generally, Convex Programming problems are effi-

ciently solvable – under mild computability and boundedness assumptions,

generic Convex Programming problems admit numerical methods capable

to approximate globally optimal solutions to whatever high accuracy in

reasonable time — are polynomial time algorithms.

As applied to an instance of a generic problem, like Linear Programming

LP =

{ instance︷ ︸︸ ︷
min
x

{cTx : Ax ≥ b} :
A ∈ Rm×n, b ∈ Rm,
c ∈ Rn,m, n ∈ Z

}
,

a polynomial time algorithm solves it to a whatever high required accuracy ϵ in

a number of arithmetic operations polynomial in the size of the instance (the

number of data entries specifying the instance, O(1)mn in the case of LP) and

the number ln(1/ϵ) of required accuracy digits.

⇒Theoretical (and to some extent – also practical) possibility to solve

convex programs of reasonable size to high accuracy in reasonable time

• No polynomial time algorithms for general-type nonconvex problems

are known, and there are strong reasons to believe that no such methods

exist.

⇒Solving general nonconvex problems of not too small sizes is usually

a highly unpredictable process: with luck, we can improve somehow the

solution we start with, but we never know how nonoptimal we still are,

and never have a reasonable a priory bound on how long it will take to

achieve desired accuracy.

Polynomial Time Solvability of Convex Programming

♣ From purely academical viewpoint, polynomial time solvability of Con-
vex Programming is a straightforward consequence of the following state-
ment:
Theorem [circa 1976] Consider a convex problem

Opt = min
x∈Rn

{
f(x) :

gi(x) ≤ 0, 1 ≤ i ≤ m
|xj| ≤ 1, 1 ≤ j ≤ n

}
normalized by the restriction

|f(x)| ≤ 1, |gj(x)| ≤ 1 ∀x ∈ B = {|xj| ≤ 1 ∀j}.
For every ϵ ∈ (0,1), one can find an ϵ-solution

xϵ ∈ B : f(xϵ)−Opt ≤ ϵ, gi(xϵ) ≤ ϵ ∀i
or to conclude correctly that the problem is infeasible at the cost of at most

3n2 ln

(
2n

ϵ

)
computations of the objective and the constraints, along with their (sub)gradients,

at subsequently generated points of intB, with O(1)n(n + m) additional arithmetic

operations per every such computation.

♣ The outlined Theorem is sufficient to establish theoretical efficient

solvability of generic Convex Programming problems. In particular, it

underlies the famous result (Leo Khachiyan, 1979) on polynomial time

solvability of LP – the first ever mathematical result which made the C2

page of New York Times (Nov 27, 1979).

♣ From practical perspective, however, polynomial type algorithms sug-

gested by Theorem are too slow: the arithmetic cost of an accuracy digit

is at least

O(n2n(m+ n)) ≥ O(n4),

which, even with modern computers, allows to solve in reasonable time

problems with hardly more than 100 – 200 design variables.

♣ Poor from practical viewpoint (although polynomial time) performance

of the algorithms in question stems from their black box oriented nature –

these algorithms do not adjust themselves to the structure of the problem

and use a priori knowledge of this structure solely to mimic First Order

oracle reporting the values and (sub)gradients of the objective and the

constraints at query points.

Note: A convex program always has a lot of structure – otherwise how

could we know that the problem is convex?

A good algorithm should utilize a priori knowledge of problem’s structure

in order to accelerate the solution process.

Example: The LP Simplex Method is fully adjusted to the partic-

ular structure of an LP problem and works directly on problem’s

data rather than on values and gradients of objective and con-

straints at search points.

Although not a polynomial time one, this algorithm in reality is

capable to solve LP’s with tens and hundreds of thousands of vari-

ables and constraints – a task which is by far out of reach of the

theoretically efficient “universal” black box oriented algorithms

underlying the Theorem.

”A good optimization algorithm should utilize problems’s structure...”

Difficulty: What is structure?

There is no formal definition; we recognize “what is structure” after we

see it, on a case-by-case basis...

• For example: What does the usual Mathematical Programming form

min
x

{f(x) : gi(x) ≤ 0,1 ≤ i ≤ m}

of a convex problem say about problem’s structure?

— It says that there is objective called f , m constraints called gi, and

that the objective and constraints are convex. Not much...

♣ Since mid-1970’s, Convex Programming is the most rapidly develop-
ing area in Optimization, with intensive and successful research primarily
focusing on

• discovery and investigation of novel well-structured generic Con-
vex Programming problems (“Conic Programming’, especially Conic
Quadratic and Semidefinite)

• developing theoretically efficient and powerful in practice algorithms
for solving well-structured convex programs, including large-scale non-
linear ones

• building Convex Programming models for a wide spectrum of problems
arising in Engineering, Signal Processing, Machine Learning, Statis-
tics, Management, Medicine, etc.

• extending modelling methodologies in order to capture factors like
data uncertainty typical for real world situations

• adjusting algorithms to distributed organization of data and compu-
tations (“cloud computing”)

• software implementation of novel optimization techniques at academic
and industry levels

“Structure-Revealing” Representation of Convex Problem: Conic
Programming

♣ When passing from a Linear Programming program

min
x

{
cTx : Ax− b ≥ 0

}
(∗)

to a nonlinear convex one, the traditional wisdom is to replace linear
inequality constraints

aTi x− bi ≥ 0

with nonlinear ones:

gi(x) ≥ 0 [gi are concave]

♠ There exists, however, another way to introduce nonlinearity, namely,
to replace the coordinate-wise vector inequality

y ≥ z ⇔ y − z ∈ Rm
+ = {u ∈ Rm : ui ≥ 0∀i} [y, z ∈ Rm]

with another vector inequality

y ≥K z ⇔ y − z ∈ K [y, z ∈ Rm]

where K is a regular cone (i.e., closed, pointed and convex cone with a
nonempty interior) in Rm.

♣ LP problem:

min
x

{
cTx : Ax− b ≥ 0

}
⇔ min

x

{
cTx : Ax− b ∈ Rm

+

}
♣ General Conic problem:

min
x

{
cTx : Ax− b ≥K 0

}
⇔ min

x

{
cTx : Ax− b ∈ K

}
• (c, A, b) – data of conic problem

• K - structure of conic problem

♠ Note: Every convex problem admits equivalent conic reformulation

♠ Note: With conic formulation, convexity is “built in”; with the stan-

dard MP formulation convexity should be kept in mind as an additional

property.

♣ Question: A general convex cone has no more structure than a general

convex function. Why conic reformulation is “structure-revealing”?

♣ Answer: As a matter of fact, just 3 types of cones allow to represent

an extremely wide spectrum (“essentially all”) of convex problems!

min
x

{
cTx : Ax− b ≥K 0

}
⇔ min

x

{
cTx : Ax− b ∈ K

}
♠ Three Magic Families of cones:

• LP: Nonnegative orthants Rm
+ – direct products of m nonnegative rays

R+ = {s ∈ R : s ≥ 0} giving rise to Linear Programming programs

min
s

{
cTx : aTℓ x− bℓ ≥ 0,1 ≤ ℓ ≤ q

}
.

• CQP: Direct products of Lorentz cones

Lp+ = {u ∈ Rp : up ≥ ∥[u1; ...;up−1]∥2}
giving rise to Conic Quadratic programs

min
x

{
cTx : ∥Aℓx− bℓ∥2 ≤ cTℓ x− dℓ,1 ≤ ℓ ≤ q

}
.

• SDP: Direct products of Semidefinite cones Sp+ = {M ∈ Sp : M ⪰ 0}
giving rise to Semidefinite programs

min
x

{
cTx : Aℓ(x) ⪰ 0, 1 ≤ ℓ ≤ q

}
.

where Sp is the space of p×p real symmetric matrices, M ⪰ 0 means that

M is symmetric positive semidefinite, and Aℓ(x) are affine in x symmetric

matrices.

Note: Constraint stating that a symmetric matrix affinely depending on

decision variables is ⪰ 0 is called LMI – Linear Matrix Inequality.

The nonnegative orthant R3 The Lorentz cone L3

3 random 3D cross-sections of the semidefinite cone S3
+

Facts:

♠ Three “magic” families of conic problems – LP, CQP, SDP – possess

extremely strong ”expressive abilities” and for all practical purposes cover

the entire Convex Programming

♠ At the same time, the cones underlying the magic families are well

understood and possess deep intrinsic mathematical similarity allowing

for unified design of theoretically and practically efficient Interior Point

polynomial time methods for LP/CQP/SDP.

♠ To enjoy the power of ”computational toolbox” of LP/CQP/SDP,

one should reformulate the problem of interest as a conic problem from a

“magic” family, and this is where a priori knowledge of problem’s structure

is used.

Illustration: The “maiden” form, as given by Statistics, of optimiza-
tion problem responsible for extracting certain specific information from
medical records reads

min
α>0,ϕ

{
max

x:Rx≤r,y:Ry≤r

1

2

[
α ln
(∑

i
eϕi/α[Ax]i

)
+ α ln

(∑
i
e−ϕi/α[Ay]i

)
+ gT [y − x]

]
+ Cα

}
Due to specific structure of A and constraints Rx ≤ r, the problem is
convex and thus efficiently solvable; however, implicit nature of the ob-
jective (presence of maxx:Rx≤r,y:Ry≤r) prevents processing the problem by
existing high-performance commercial solvers.
• Applying techniques to be presented in our course, the problem can be
rewritten equivalently as

min
α>0,ϕ,λ±,u±,µ±,ξ±,η±

1

2
[u+ + u−] + Cα :

ξ+ ≥ λ+, η+ ≥ 0, ξ− ≥ λ−, η− ≥ 0;
RTη+ −AT ξ+ = −g, rTη+ ≤ α− µ+ + u+,
RTη− −AT ξ− = g, rTη− ≤ α− µ− + u−;
ϕi − µ+ + α ln(α/λ+i) ≤ 0, −ϕi − µ− + α ln(α/λ−i) ≤ 0, ∀i

 .

The reformulated problem possesses explicitly given objective and con-

straints and can be processed by existing commercial solvers.

Fact: Modern Interior Point Polynomial Time methods for LP/CQP/SDP
are the best known so far techniques for finding high accuracy solutions to

convex programs – after the program is reformulated as LP/CQP/SDP,

such a solution usually is found in a moderate (few tens) number of iter-

ations, an iteration reducing to assembling and solving a system of linear

equations.

However: For extremely large-scale problems, the linear systems arising

in Interior Point methods become too large to be solved in reasonable

time

⇒ In the large-scale case, utilizing ”computationally cheap” optimization

techniques becomes a must.

As far as constrained/nonsmooth large-scale convex problems are con-

cerned, the scope of these “computationally cheap” techniques – First

Order algorithms – is restricted to search for medium-accuracy solutions.

In our course, the emphasis will be on
♣ Theory of Conic Programming, primarily Conic Programming Duality
Duality is indispensable tool in

(a) processing conic problems “on paper,” allowing in numerous cases to gain
deep theoretical understanding of the situation
(b) design of solution algorithms aimed at “getting number.”

♣ “How to press the button” — how to pose the problem at hand as a

conic problem from Magic Family. Specifically, we will investigate expres-

sive abilities and typical applications, primarily in Engineering, of Linear,

Conic Quadratic, and Semidefinite Programming

♣ Demonstrating polynomial time solvability of Convex Programming

♣ “How we do the rest” — what are typical convex programming algo-

rithms, specifically,

— polynomial time Interior Point methods for LP/CQP/SDP
— “computationally cheap” First Order algorithms for deterministic and

stochastic problems with convex structure

Main Notational Conventions

♣ O(1)’s. Below O(1)’s denote properly selected positive absolute con-

stants. We write f ≤ O(1)g, where f and g are nonnegative functions of

some parameters, to express the fact that for properly selected positive

absolute constant C the inequality f ≤ Cg holds true in the entire range

of the parameters, and we write f = O(1)g when both f ≤ O(1)g and

g ≤ O(1)f .

♣ Vectors and matrices:

• All vectors are column vectors.

• Rn is the linear space of n-dimensional real vectors

• Rm×n is the linear space of m× n matrices

• Sn is the linear space of n× n real symmetric matrices

0.1

♣ Sometimes we use “MATLAB notation” to save space:

— [A1;A2;...;Ak] is array obtained from equal width arrays A1, ..., Ak by

writing them into column from top to bottom

— [A1,A2,...,Ak] is array obtained from equal height arrays A1, ..., Ak by

writing them into row, from left to right.

Examples:

• A1 =

[
1 2 3
4 5 6

]
, A2 =

[
7 8 9

]
⇒ [A1;A2] =

 1 2 3
4 5 6
7 8 9

• A1 =

[
1 2
3 4

]
, A2 =

[
7
8

]
⇒ [A1, A2] =

[
1 2 7
4 5 8

]
• [1,2,3,4] = [1; 2; 3; 4]T

• [[1,2; 3,4], [5,6; 7,8]] =

[[
1 2
3 4

]
,

[
5 6
7 8

]]
=

[
1 2 5 6
3 4 7 8

]
= [1,2,5,6; 3,4,7,8]

♣ Whenever possible, we replace zero entries in a matrix with blanks.

Say,

 1 0 0
0 2 0
0 0 3

 is usually written down as

 1
2

3

0.2

♣ Diag and Dg

• For vector x ∈ Rm, Diag{x} is diagonal m ×m matrix with the entries

in x as diagonal entries:

Diag{[1; 2; 3]} =

 1
2

3

• For matrices A1, ..., Ak, Diag{A1, ..., Ak} is block-diagonal matrix with

diagonal blocks A1, A2,...,Ak:

Diag{1, [2,3], [4,5; 6,7]} =

1

2 3
4 5
6 7

• For square matrix A, Dg(A) extracts from A the vector of diagonal

entries:

Dg

 1 2 3
4 5 6
7 8 9

 =

 1
5
9

0.3

I. FROM LINEAR

TO

CONIC PROGRAMMING

Linear Programming

min
x

{
cTx : Ax ≥ b

}
[x ∈ Rn, A ∈ Rm×n]

♣ Aside of modelling and algorithmic issues, the most important issue in
LP is LP Duality Theory, which, essentially, answers the following basic
question:

(?) How to certify that a system of strict and nonstrict linear inequalities{
Px > p
Qx ≥ q

(S)

has no solutions?
Certificate, informally, is a short and transparent proof.

♦ Note: it is easy to certify that (S) has a solution: every solution is a
certificate!
A solution indeed is a “short and transparent proof:” given it, everybody
who knows arithmetics can check that it is a solution, and thus conclude
that (S) is feasible.

1.1

Illustration: How to certify that the system of inequalities

−4u −9v +5w > 1.8
−2u +6v ≥ −2

7u −5w ≥ 1

in variables x = [u; v;w] is solvable ?

A certificate is, e.g., the vector x̄ = [u; v;w] = [0.15;−0.27; 0]. Plugging it

into the inequalities, the left hand sides become 1.83 > 1.8, −1.92 ≥ −2,

1.05 ≥ 1 ⇒ x̄ solves the system ⇒ the system is solvable.

1.2

General Theorem on Alternative

• Question: Given a finite system of strict and non-strict linear inequal-
ities with n unknowns {

Px > p (a)
Qx ≥ q (b)

(S)

how to certify that the system has no solutions?
Example: To certify that the system

−4u −9v +5w > 2
−2u +6v ≥ −2

7u −5w ≥ 1

has no solutions, it suffices to point out that aggregating the inequalities of the system
with weights 2,3,2, we get a contradictory inequality:

2× −4u −9v +5w > 2
+

3× −2u +6v ≥ −2
+

2× 7u −5w ≥ 1
0 · u +0 · v +0 · w > 0

By how we aggregate, every solution to the system must solve the aggregated inequality.

The latter has no solutions ⇒ so is the system.

1.3

General Theorem on Alternative

• Question: Given a finite system of strict and non-strict linear inequal-

ities with n unknowns {
Px > p (a)
Qx ≥ q (b)

(S)

How to certify that the system has no solutions?

• Simple sufficient condition for insolvability:

Assume that we can get, as a “linear consequence” of (S) (i.e., by multi-

plying inequalities (a) by nonnegative weights si, inequalities (b) by non-

negative weights yj and adding the results) a contradictory (no solutions

at all!) inequality:

There exist nonnegative weight vectors s (dim s = dim p) and y (dim y =

dim q) such that the inequality

[sTP + yTQ]xΩ sTp+ yT q

Ω =

” > ”, s 6= 0

” ≥ ”, s = 0

 (∗)

with unknowns x has no solutions. Then (S) is infeasible.

1.4

{Px > p,Qx ≥ q} & {s ≥ 0, y ≥ 0} ⇒ [sTP + yTQ]xΩ sTp+ yTq︸ ︷︷ ︸
(∗)

[
Ω =

{
” > ”, s 6= 0

” ≥ ”, s = 0

]
Observation: Inequality (*) has no solutions iff PT s+QTy = 0 and

— either
{

Ω = ” > ” and sTp+ yT q ≥ 0
}

,

— or
{

Ω = ” ≥ ” and sTp+ yT q > 0
}

We have arrived at
Proposition. Given system of strict and nonstrict linear inequalities{

Px > p
Qx ≥ q

, (S)

let us associate with it the following two systems of linear equalities/inequalities with

unknowns s,y:

TI :

s, y ≥ 0;

P Ts+QTy = 0;
pTs+ qTy ≥ 0;∑

i

si > 0.

TII :

 y ≥ 0;
QTy = 0;
qTy > 0.

If one of the systems TI, TII has a solution, then (S) has no solutions.

General Theorem on Alternative. The sufficient condition for infeasi-

bility of (S) stated by Proposition is in fact necessary and sufficient.

1.5

S :

{
Px > p
Qx ≥ q

TI :

s, y ≥ 0;

P Ts+QTy = 0;
pTs+ qTy ≥ 0;∑

i

si > 0.

TII :

 y ≥ 0;
QTy = 0;
qTy > 0.

Remark: By GTA applied to the system

Qx ≥ q, (SNS)

this system is unsolvable iff TII is solvable. Thus,

• System (SNS) is unsolvable iff system TII is solvable;

• Assume that system (SNS) is solvable. Then system (S) is unsolvable

iff system TI is solvable.

1.6

Corollaries: A. A system of linear inequalities

aTi x

>
≥
≤
<

bi, i = 1, ...,m

is infeasible iff one can combine the inequalities of the system in a legiti-

mate linear fashion (i.e., multiply the inequalities by weights and add the

results, the sign of the weights making the summation legitimate) to get

a contradictory inequality, namely, either the inequality 0Tx ≥ 1, or the

inequality 0Tx > b with b ≥ 0.

B. [Inhomogeneous Farkas Lemma] A scalar linear inequality aT0x ≤ b0 is

a consequence of a solvable system of linear inequalities

aTi x ≤ bi, i = 1, ...,m

iff it can be obtained by taking weighted sum, with nonnegative weights,

of inequalities from the system and the trivial identically true inequality

0 ≤ 1:

a0 =
∑m
i=1 λiai, b0 = λ0 +

∑
i λibi for some λi ≥ 0, i = 0,1, ...,m

1.7

♣ GTA is a really striking fact:{
−1 ≤ u ≤ 1
−1 ≤ v ≤ 1

⇒
{
u2 ≤ 1
v2 ≤ 1

⇒ u2 + v2 ≤ 2

⇒ u+ v = 1× u+ 1× v ≤
√

12 + 12
√
u2 + v2 ≤

√
2×
√

2 = 2⇒u+ v ≤ 2

In this “highly nonlinear” derivation, the premise is a solvable system of
linear inequalities, and the conclusion is a linear inequality. How could we
know in advance that every derivation of this type can be replaced just
with linear aggregation of the inequalities in the premise and the trivial
inequality 0 ≤ 1?

♣ GTA heavily exploits the fact that we are speaking about linear inequal-
ities: {

u ≤ 1
−u ≤ 1

⇒ u2 ≤ 1 — definitely true!

However, aggregating in a legitimate linear fashion inequalities from the
premise and trivial (i.e., identically true) linear and quadratic inequalities,
like

0 ≤ 1, −u2 ≤ 0,−u2 + 2u ≤ 1, ...

you cannot get the concluding inequality.
1.8

GTA - Sketch of the proof

♣ Starting point: Homogeneous Farkas Lemma: A homogeneous

linear inequality

aTx ≥ 0 (I)

is a consequence of a system of homogeneous linear inequalities

aTi x ≥ 0, i = 1, ...,m, (H)

iff (I) can be obtained from (H) by linear aggregation:

∃y ≥ 0 : a =
∑
i

yiai,

that is, iff a is a conic combination (linear combination with nonnegative

coefficients) of a1,, am.

Note: (I) being a consequence of (H) is exactly the same as infeasibility of the system
aTx < 0,
aTi x ≥ 0, i = 1, ...,m.

What GTA says in this case, is exactly HFL. Our course of actions is opposite: we will

directly prove HFL and then derive GTA from HFL.

1.9

♣ HFL ⇒ GTA: Given system{
Px > p
Qx ≥ q

(S)

in variables x, we associate with it system
Px − tp − ε1 ≥ 0
Qx − tq ≥ 0

t − ε ≥ 0
(H)

in variables x, t, ε (1: all-ones vector).

It is immediately seen that (S) has no solutions iff (H) has no solutions

with ε > 0, i.e., iff the homogeneous linear inequality −ε ≥ 0 is a conse-

quence of the system of homogeneous linear inequalities (H). HFL says

exactly when the latter happens, and this answer turns out to be exactly

the statement of GTA.

1.10

HFL – Intelligent Proof

♣ A set X ⊂ Rn is called polyhedral, if it is a solution set of a finite

system of nonstrict linear inequalities:

X is polyhedral⇔ ∃A, b : X = {x ∈ Rn : Ax ≤ b}.

♣ A polyhedral representation of a set X ⊂ Rn
x is a representation of X

as the projection of a higher-dimensional polyhedral set

X+ = {[x;u] : Ax+Bu ≤ c} ⊂ Rn
x ×Rk

u

onto the x-space, that is, as the image of X+ under the projection map-

ping [x;u] 7→ x : Rn
x ×Rk

u → Rn
x:

X = {x ∈ Rn : ∃u : Ax+Bu ≤ c}

1.11

Rotated 3D cube and its 2D projection (hexagon)

1.12

♣ Fact: A set is polyhedral iff it admits polyhedral representation, or,

equivalently, the projection X of a polyhedral set

X+ = {[x;u] : Ax+Bu ≤ c}

on the space of x-variables can be represented as a solution set of a finite

system of nonstrict linear inequalities in x-variables only.

1.13

Proof [Fourier-Motzkin Elimination]: It suffices to consider the case when

u is one-dimensional. Let us split all inequalities

aTi x+ biu ≤ ci, 1 ≤ i ≤ I,
into three groups:
• black: bi = 0 (i ∈ Black). Black inequality says that aTi x ≤ ci;
• red: bi > 0 (i ∈ Red). Red inequality says that u ≤ αTi x+ βi, i.e., it
imposes an affine in x upper bound on u.
• green: bi < 0 (i ∈ Green). Green inequality says that u ≥ αTi x+ βi, i.e.,
it imposes an affine in x lower bound on u
♠ Observe that a vector x̄ belongs to the projection of X+ on the x-plane
iff x̄ satisfies all black inequalities aTi x̄ ≤ ci ∀i ∈ Black and we can point out
a real which meets all stemming from x̄ upper and lower bounds on u.
The latter is possible iff every upper bound is ≥ every lower bound, and
we arrive at

X := {x : ∃u : Ax+ ub ≤ c} =

{
x :

{
aTi x ≤ ci∀i ∈ Black
αTi x+ bi ≥ αTj x+ βj ∀(i ∈ Red, j ∈ Green)

}
⇒X indeed is polyhedral.

1.14

♣ Now we are ready to prove HFL. The only nontrivial part of the state-

ment is If a is not a conic combination of a1, ..., an, then aTd < 0 for some

d with aTi d ≥ 0, i = 1, ..., n.

Proof: Let a 6∈ Cone(a1, ..., an) =
{∑n

i=1 uiai : u ≥ 0
}

. Observe that

Cone(a1, ..., an) admits polyhedral representation:

Cone(a1, ..., an) =

{
x : ∃u :

u ≥ 0,
x−

∑
i uiai = 0

}
By the above, Cone(a1, ..., an) is polyhedral: there exists a finite system

of inequalities pTj x ≥ qj, 1 ≤ j ≤ J, such that

Cone(a1, ..., an) = {x : pTj x ≥ qj}.

• Since 0 ∈ Cone(a1, ..., an), we have qj ≤ 0 for all j;

• Since a 6∈ Cone(a1, ..., an), we have pTj∗a < qj∗ for some j∗, whence pTj∗a <

0;

• since tai ∈ Cone(a1, ..., an) for all i and all t > 0, we should have pTj∗(tai) ≥
qj∗ for all t > 0, whence pTj∗ai ≥ 0 for all i = 1, ..., n.

⇒with d = pj∗ we have aTi d ≥ 0 for all i and aTd < 0, as required.

1.15

Dual to a Linear Programming program

• Question: When a real a is a lower bound on the optimal value of an

LP program

min
x

{
cTx : Ax− b ≥ 0

}
? (P)

• Answer: We are asking when the linear inequality

cTx ≥ a
is a corollary of the finite system of linear inequalities

Ax ≥ b.
A sufficient condition for this is the possibility to get the target inequality

by aggregation, with nonnegative weights, of the inequalities from the

system and identically true inequality 0Tx ≥ −1:

∃y ≥ 0 : ATy = c, yT b ≥ a

This sufficient condition is also necessary, provided that (P) is feasible

(Corollary B of GTA).

1.16

min
x

{
cTx : Ax− b ≥ 0

}
(P)

• Conclusion: The optimal value in the optimization problem

max
y

{
bTy : ATy = c, y ≥ 0

}
(D)

is a lower bound on the optimal value in (P). If the optimal value in (P)

is finite, then (D) is solvable, and

Opt(P) = Opt(D).

1.17

LP Duality Theorem. Consider an LP program

min
x

{
cTx : Ax ≥ b

}
(P)

(the “primal” problem) along with its dual

max
y

{
bTy : ATy = c, y ≥ 0

}
(D)

Then
• The duality is symmetric: the problem dual to dual is equivalent to the
primal;
• The value of the dual objective at every dual feasible solution is ≤ the
value of the primal objective at every primal feasible solution
• The following 5 properties are equivalent to each other:

(i) The primal is feasible and below bounded.
(ii) The dual is feasible and above bounded.
(iii) The primal is solvable.
(iv) The dual is solvable.
(v) Both primal and dual are feasible.

Whenever (i) ≡ (ii) ≡ (iii) ≡ (iv) ≡ (v) is the case, the optimal values in
the primal and the dual problems are equal to each other:

Opt(P) = Opt(D).

1.18

min
x

{
cTx : Ax ≥ b

}
(P)

max
y

{
bTy : ATy = c, y ≥ 0

}
(D)

Corollary. [Necessary and sufficient optimality conditions in LP] Consider
an LP program (P) along with its dual (D), and let (x, y) be a pair
of primal and dual feasible solutions. The pair is comprised of optimal
solutions to the respective problems iff

cTx− bTy = 0 [zero duality gap]

as well as iff

yi[Ax− b]i = 0, i = 1, ...,m, [complementary slackness]

Indeed, since (P) and (D) are feasible, they are solvable with equal optimal values, hence

for primal-dual feasible (x, y)
DualityGap(x, y) ≡ cTx− bTy = cTx−Opt(P)︸ ︷︷ ︸

≥0

+ Opt(D)− bTy︸ ︷︷ ︸
≥0

is always nonnegative and is 0 iff x, y are optimal for the respective problems.

Next, for a primal-dual feasible (x, y) we have
DualityGap(x, y) = cTx− bTy = (ATy)Tx− bTy = [Ax− b]Ty
⇒ cTx− bTy = 0⇔ [Ax− b]︸ ︷︷ ︸

≥0

T y︸︷︷︸
≥0

= 0⇔ yi[Ax− b]i = 0 ∀i.

1.19

Selected Engineering Applications of LP, I
Sparsity-oriented Signal Processing and `1 minimization

♣ The basic problem of Signal Processing is as follows:

(??) “In the nature” there exists a signal represented by vector x ∈ Rn. Given observation
y = Ax+ η

• A: m× n sensing matrix
• η: observation noise

we want to recover x.

♠ There are many different approaches to (??), depending primarily on the relation

between m and n and on a priori information on x:

Parametric case: m � n: in principle, no a priori information on x is needed. In the

“no noise” case η = 0 and with a “general position” A, x is readily given by y. When

η 6= 0, the challenge is to reduce the influence of the noise on the estimate. A typical

estimate is the Least Squares one:

x̂(y) ∈ Argminw∈Rn ‖Aw − y‖2
2.

Least Squares are commonly used when η = σξ, ξ ∼ N (0, Im).

Nonparametric case: m � n: In the “no noise” case η = 0 the equality y = Ax does

not define x uniquely

⇒A priori information on x is needed!

— In Compressed Sensing, a priori information is that x is sparse — has at most a given

number s� m of nonzero entries.

1.20

♠ Fact: Many real-life signals x when presented by their coefficients in

properly selected basis (“dictionary”) B:
x = Bu

• columns of B: vectors of basis B
• u: coefficients of x in basis B

become sparse (or nearly so): u has just s� n nonzero entries (or can

be well approximated by vector with s � n nonzero entries). We do not

assume the location of “meaningful coefficients” known in advance.

1.21

Example I: Typical audio signals become sparse (or nearly so) when rep-
resenting them ”in frequency domain” – as sums of harmonic oscillations
of different frequencies:

0 50 100 150 200 250 300
-4

-3

-2

-1

0

1

2

3

0 50 100 150 200 250 300
-1.5

-1

-0.5

0

0.5

1

1.5

Top: singal in time domain
Bottom: decomposition of signal into sum of harmonic oscillations

1.22

Illustration: 25 sec fragment of audio signal “Mail must go through”

(dimension 1,058,400) and its ”Fourier coefficients” – amplitudes of par-

ticipating harmonic oscillations vs. the frequencies:

0 5 10 15 20 25
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

How mail goes through in time domain How mail goes through in frequency domain

% of leading Fourier coefficients kept energy
100% 100%
25% 99.8%
15% 99.6%
5% 98.2%
1% 79.0%

1.23

Example II: The 256× 256 image

50 100 150 200 250

50

100

150

200

250

can be thought of as 2562 = 65536-dimensional vector (write down the intensities of
pixels column by column). This image (same as other “non-pathological” images) is
nearly sparse when represented in wavelet basis:

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

1% of leading wavelet
coefficients kept (99.70% of energy)

5% of leading wavelet
coefficients kept (99.93% of energy)

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

10% of leading wavelet
coefficients kept (99.96% of energy)

25% of leading wavelet
coefficients kept (99.99% of energy)

1.24

Single pixel camera

• David Donoho, Compressed sensing — from blackboard to bedside
Gauss Prize Lecture, International Congress of Mathematicians, 2018
https://www.youtube.com/watch?v=mr-oT5gMboM

1.25

♠ When recovering a signal x∗ admitting a sparse (or nearly so) representation Bu∗ in a
known basis B from observations

y = Ax∗ + η,
the situation reduces to the one when the signal to be recovered is just sparse.
Indeed, we can first recover sparse u∗ from observations

y = Ax∗ + η = [AB]u∗ + η.
After an estimate û of u∗ is built, we can estimate x∗ by Bû.
⇒ In fact, sparse recovery is about how to recover a sparse n-dimensional signal x from
m� n observations

y = Ax∗ + η.

1.26

y = Ax+ η, ‖η‖ ≤ δ, ‖x‖0 := Card{i : xi 6= 0} ≤ s ?? 7→?? x̂ ≈ x

♣ Let δ = 0. When the number s of nonzero entries in x ∈ Rn is essentially smaller than
the number m = dim y of observations, the recovery problem becomes well-posed and
can be solved by, e.g., `0 minimization:

x̂ ∈ Argmin
w∈Rn

{‖w‖0 : Aw = y}

Simple fact: Let every m× 2s submatrix of the m× n matrix A be of rank 2s (which is
the case for a “general position” matrix A, provided that 2s ≤ min[m,n]). Then in the
noiseless case the `0 minimization recovers exactly every s-sparse signal x.
Indeed, x is feasible for the minimization problem ⇒‖x̂‖0 ≤ ‖x‖0 ≤ s ⇒‖x − x̂‖0 ≤ 2s,
which combines with A(x− x̂) = 0 and the assumption that every 2s columns of A are
linearly independent to imply x− x̂ = 0.
Bad news: `0 minimization requires to solve a disastrously complex combinatorial prob-
lem and as such is completely impractical.
A remedy: let us replace minimizing nonconvex (and even discontinuous) ‖ · ‖0 with
minimizing the “closest” to ‖ · ‖0 convex function ‖ · ‖1, thus arriving at `1 minimization,
which in the noiseless case is

x̂(y) ∈ Argmin
w∈Rn

{‖w‖1 : Aw = y}. [‖z‖1 =
∑

i |zi|]

• Extensions of `1 minimization to the case of noisy observation take different forms,
depending on noise’s structure. For example, in the case of uncertain-but-bounded
noise, where all we know is that ‖η‖ ≤ δ, ‖ · ‖ and δ being given, a natural version of `1

minimization is

x̂(y) ∈ Argmin
w

{‖w‖1 : ‖Aw − y‖ ≤ δ} .

1.27

y = Ax+ η, ‖η‖ ≤ δ ⇒ x̂(y) ∈ Argmin
w∈Rn

{‖w‖1 : ‖Aw − y‖ ≤ δ}

Note: When δ = 0, same as when ‖w‖ = ‖w‖∞ := maxi |wi|, `1 recovery reduces to
solving an LP program!
Basic questions:
A. When A is s-good, that is, when `1-recovery in the noiseless case δ = 0 recovers
exactly every s-sparse signal x?
B. For s-good A, what are the error bounds of `1 recovery in the presence of noise?

1.28

A. When A is s-good, that is, when `1-recovery in the noiseless case δ = 0 recovers
exactly every s-sparse signal x?
Answer to A can be straightforwardly extracted from LP optimality conditions (and
can be easily justified after it is guessed):
(!) A is s-good iff the nullspace property takes place: for every subset I of cardinality s
of the index set {1, ..., n} and for every z ∈ KerA\{0} one has

‖zI‖1 <
1

2
‖z‖1.

where zI is obtained from z by keeping intact all entries with indexes from I and zeroing
out entries with indexes not in I.

1.29

Claim: A is s-good iff the nullspace property takes place: for every subset I of cardinality
s of the index set {1, ..., n} and for every z ∈ KerA\{0} one has

‖zI‖1 <
1

2
‖z‖1.

where zI is obtained from z by keeping intact all entries with indexes from I and zeroing
out entries with indexes not in I.
Only if: Assume that for some I, Card(I) ≤ s, and some nonzero z ∈ KerA, one has
‖zI‖1 ≥ 1

2
‖z‖1, or, equivalently, ‖zI‖1 ≥ ‖zJ‖1, J = {1, ..., n}\I, and let us prove that A is

not s-good. Let the true signal be the s-sparse signal x = zI. Then

Az = 0⇒ Ax = A[−zJ] & ‖zJ‖1 ≤ ‖zI‖1 = ‖x‖1

⇒ x is not the unique optimal solution to minw{‖w‖1 : Aw = Ax}
⇒ A is not s-good.

If: Let the nullspace property take place, let x be s-sparse, so that x = xI for some
I,Card(I) ≤ s, and let x̂ ∈ Argminw{‖w‖1 : Aw = Ax}. Let J = {1, ..., n}\I and z = x̂− x.
Assuming z 6= 0, let us lead this assumption to a contradiction. Since 0 6= z ∈ KerA, we
have by nullspace property ‖zI‖1 < ‖zJ‖1, so that

‖xI‖1 − ‖x̂I‖1 ≤ ‖zI‖1 < ‖zJ‖1 = ‖x̂J‖ ⇒ [‖x‖1 =] ‖xI‖1 < ‖x̂‖1

and the concluding inequality contradicts the origin of x̂.

1.30

B. For s-good A, what are the error bounds of `1 recovery in the presence of noise?
Let us set

‖x‖s,1 := max
I:Card(I)≤s

‖xI‖1 =︸︷︷︸
(!)

max
u

{
uTx : ‖u‖∞ ≤ 1, ‖u‖1 ≤ s

}
Note: (!) is due to the evident fact that for a positive integer s ≤ n, the extreme points
of the convex polytope

Us = {u ∈ Rn : ‖u‖∞ ≤ 1,
∑

i |ui| ≤ s}
are exactly the vectors with s nonzero entries equal to ±1.
Observation: A is s-good iff the quantity

κs(A) = max
x
{‖x‖s,1 : Ax = 0, ‖x‖1 ≤ 1} = maxx,u

{
uTx : u ∈ Us, Ax = 0, ‖x‖1 ≤ 1

}
is < 1/2.
Indeed, the nullspace property says that ‖xI‖1 <

1
2
‖x‖1 for all 0 6= x ∈ KerA and every I

with Card(I) ≤ s, which is the same as ‖x‖s,1 < 1/2 whenever x ∈ KerA and ‖x‖1 ≤ 1.
Observation: For every integer s ≤ n, every m×n matrix A and every norm ‖ · ‖ on the
image space Rm of A there exists β <∞ such that

∀x ∈ Rn : ‖x‖s,1 ≤ β‖Ax‖+ κs(A)‖x‖1. (∗)
The infimum of β’s satisfying this property will be denoted βs(A, ‖ · ‖).
Indeed, let P be orthogonal projector on KerA. For some α < ∞ and all z we have
‖(I − P)z‖1 ≤ α‖A(I − P)z‖, whence
‖z‖s,1 ≤ ‖(I − P)z‖s,1 + ‖Pz‖s,1 ≤ ‖(I − P)z‖1 + κs(A)‖Pz‖1 ≤ ‖(I − P)z‖1 + κs(A)[‖z‖1 + ‖(I − P)z‖1]

≤ (1 + κs(A))‖(I − P)z‖1 + κs(A)‖z‖1 ≤ α(1 + κs(A))‖A(I − P)z‖+ κs(A)‖z‖1
= α(1 + κs(A))︸ ︷︷ ︸

β

‖Az‖+ κs(A)‖z‖1

Note: (∗) with κs(A) < 1/2 implies nullspace property.

1.31

∀z ∈ Rn : ‖z‖s,1 ≤ β‖Az‖+ κs(A)‖z‖1. (∗)
♣ The quantities κs(A) and βs(A, ‖ · ‖) are responsible for the error bound in imperfect
`1 recovery:
Theorem. Let A be m× n sensing matrix and s be a positive integer. Assume that
• signal x ∈ Rn is nearly s-sparse: ‖x− xs‖1 ≤ υ for some s-sparse vector xs;
• noise η in the observation y = Ax+ η satisfies ‖η‖ ≤ δ for given δ ≥ 0 and norm ‖ · ‖;
• x̂ is obtained from A, y, δ by imperfect `1-recovery:

‖x̂‖1 ≤ ν + min
w
{‖w‖1 : ‖Aw − y‖ ≤ δ}︸ ︷︷ ︸

Opt

& ‖Ax̂− y‖ ≤ δ + ε.

Assuming (∗) and κs(A) < 1/2, the following error bound holds true:

‖x− x̂‖1 ≤
2βs(A, ‖ · ‖)[2δ + ε] + 2υ + ν

1− 2κs(A)
.

1.32

Proof. W.l.o.g. we can take xs = xI, where I is the collection of indexes of the s
largest in magnitude entries in x, and xI is obtained from x by zeroing out the entries
with indexes outside of I. Let J = {1, ..., n}\I and z = x̂− x, so that ‖xJ‖1 = υ. Setting
κ = κs(A), β = βs(A, ‖ · ‖), have

(a) ‖x̂‖1 ≤ Opt + ν ≤ ‖x‖1 + ν = ‖xI‖1 + ‖xJ‖1 + ν,
(b) ‖Az‖ ≤ ‖[Ax̂− y] + [y −Ax]‖ ≤ ‖Ax̂− y‖+ ‖Ax− y‖ ≤ 2δ + ε,
(c) ‖x̂J‖1 − ‖xJ‖1 ≤ ‖x̂‖1 − ‖x̂I‖1 − ‖xJ‖1 ≤ ν + ‖xI‖1 − ‖x̂I‖1 ≤ ν + ‖zI‖1; [by (a)]

‖zI‖1 ≤ β‖Az‖+ κ‖z‖1 = β‖Az‖+ κ[‖zI‖1 + ‖zJ‖1]
⇒ (d) ‖zI‖1 ≤ β‖Az‖

1−κ + κ
1−κ‖zJ‖1 ≤ β(2δ+ε)

1−κ + κ
1−κ‖zJ‖1, [see (b)]

(e) ‖z‖1 ≤ β(2δ+ε)
1−κ + 1

1−κ‖zJ‖1. [by (d)]

We have

‖x̂J‖1 − ‖xJ‖1 ≤︸︷︷︸
(c)

ν + ‖zI‖1 ≤︸︷︷︸
(d)

ν + β(2δ+ε)
1−κ + κ

1−κ‖zJ‖1 ≤ ν + β(2δ+ε)
1−κ + κ

1−κ[‖xJ‖1 + ‖x̂J‖1]

⇒ 1−2κ
1−κ ‖x̂J‖1 ≤ ν + β(2δ+ε)

1−κ + 1
1−κ‖xJ‖1 ⇒ 1−2κ

1−κ ‖zJ‖1 ≤ ν + β(2δ+ε)
1−κ + 2‖xJ‖1

⇒ ‖zJ‖1 ≤ ν(1−κ)+β(2δ+ε)+2(1−κ)‖xJ‖1

1−2κ

⇒ ‖zJ‖1 ≤ ν(1−κ)+β(2δ+ε)+2(1−κ)υ
1−2κ

Invoking (e), we arrive at the desired bound

‖x− x̂︸ ︷︷ ︸
z

‖1 ≤
2βs(A, ‖ · ‖)[2δ + ε] + 2υ + ν

1− 2κs(A)
.

1.33

Intermediate Summary on `1-Recovery

♠ Problem of interest: to recover signal x ∈ Rn from noisy observation y = Ax+ η with
“uncertain-but-bounded” observation noise: ‖η‖ ≤ δ when the observations are deficient:
m = dim y � n and the signal is s-sparse – has at most s� m nonzero entries.
♠ `1 recovery: argmin{‖w‖1 : ‖Aw − y‖ ≤ δ}
♠ ‖z‖s,1: total magnitude of s largest in magnitude entries in z. A is s-good, meaning
that `1 minimization recovers exactly all s-sparse signals in the noiseless case, iff

κs(A):= max
z
{‖z‖s,1 : Az = 0, ‖z‖1 ≤ 1} <

1

2

(“nullspace property”).

♠ Given norm ‖ · ‖ on Rm, one has ∀z : ‖z‖s,1 ≤ βs‖Az‖+κs(A)‖z‖1 with properly selected
βs = βs(A, ‖ · ‖).
When κs(A) < 1/2, βs and κs are responsible for error bounds in imperfect `1 recovery
(nonzero noise and/or nearly s-sparse, rather than perfectly s-sparse, signal and/or
imprecise `1 minimization).

1.34

Tractability Issues

♣ We have defined the quantities κs(A) , βs(A, ‖ · ‖) responsible for s-goodness of A and
for the error bound for imperfect `1 recovery.
But: It is unclear how to compute efficiently κs(A). Moreover, no ways to verify the
nullspace property in reasonable time are known, unless s is “very small,” like 1 or 2.
⇒We need verifiable sufficient conditions for s-goodness, or, which is basically the same,
an efficiently computable upper bound κ+

s (A) on the quantity

κs(A) = max
z
{‖z‖s,1 : ‖z‖1 ≤ 1, Az = 0} .

Equipped with such a bound, we could use the verifiable condition κ+
s (A) < 1/2 as a

sufficient condition for s-goodness of A.
Computationally Efficient Upper-Bounding of κs(A): For H ∈ Rm×n we have

κs(A) := max
z
{‖z‖s,1 : ‖z‖1 ≤ 1 & Az = 0}

= max
z

{
‖[I −HTA]z‖s,1 : ‖z‖1 ≤ 1 & Az = 0

}
≤max

z

{
‖[I −HTA]z‖s,1 : ‖z‖1 ≤ 1

}
= max

z

∥∥‖∑
j
zjColj[I −HTA]‖s,1 :

∑
j
|zj| ≤ 1

}
≤max

z

{∑
j
|zj| ‖Colj[I −HTA]‖s,1 :

∑
j
|zj| ≤ 1

}
= maxj ‖Colj[I −HTA]‖s,1

⇒The efficiently computable quantity

κ+
s (A) = min

H∈Rm×n
max
j
‖Colj[I −HTA]‖s,1

is an upper bound on κs(A), and thus the efficiently verifiable condition κ+
s (A) < 1/2 is

sufficient for s-goodness of A.

1.35

What is inside

Observation: κs(A) is the maximum of convex function ‖u‖s,1 on the polytope

X = Conv{±e1, ...,±en}
⋂
{x : Ax = 0} = {x : Ax = 0, ‖x‖1 ≤ 1}.

A recipe for upper-bounding a convex function φ(x) over polytope

X = Conv{f1, ..., fN}
⋂
{x : Ax = 0} [A ∈ Rm×n]

which we used is as follows: For every H ∈ Rm×n we have

φ∗ := max
x∈X

φ(x) = max
x
{φ(x) : x ∈ Conv{f1, ..., fN}, Ax = 0}

= max
x

{
φ([I −HTA]x) : x ∈ Conv{f1, ..., fN}, Ax = 0

}
≤ max

x

{
φ([I −HTA]x) : x ∈ Conv{f1, ..., fN}

}
= max

j≤N
φ([I −HTA]fj)

⇒ φ∗ ≤ φ+
∗ := min

H

[
max
j

φ([I −HTA]fj)

]
,

and φ+
∗ is efficiently computable – this is the optimal value in explicit convex optimization

problem.

1.36

Two birds with one stone

♣ Assume that we can certify s-goodness of A by the above verifiable sufficient condition,
that is, we have at our disposal a matrix H such that

κ+ := max
j
‖Colj[∆]‖s,1 < 1/2, ∆ = I −HTA

Then for every x ∈ Rn we have x = [∆ +HTA]x, whence

‖x‖s,1 ≤ ‖HTAx‖s,1 + ‖∆x‖s,1 ≤ s‖HTAx‖∞ +
∑n

j=1 |xj|‖Colj(∆)‖s,1
≤ β‖Ax‖+ κ+‖x‖1, β = smax

j
‖Colj[H]‖∗[

‖f‖∗ = max‖u‖≤1 f
Tu
]

⇒We arrive at

κs(A) ≤ κ+ <
1

2
and βs(A, ‖ · ‖) ≤ smax

j
‖Colj[H]‖∗.

1.37

Remarks:
A. Computing κ+

s (A) and the associated H reduces to LP.
Indeed, for z ∈ Rn we have

‖z‖s,1 = max
u

{
zTu : ‖u‖∞ ≤ 1, ‖u‖1 ≤ s

}
= min

y,t

{
st+

∑n
j=1 yj : y ≥ 0, |zj| ≤ yj + t ∀j

}
[LP duality]

⇒ κ+
s (A) := minH,τ

{
τ : ‖Colj[I −HTA]‖s,1 ≤ τ

}
= min

y1,...,yn,t1,...,tn,H,τ

{
τ :

{
−yj − tj1 ≤ Colj[I −HTA] ≤ yj + tj1, 1 ≤ j ≤ n
yj ≥ 0,

∑n
i=1 y

j
i + stj ≤ τ, 1 ≤ j ≤ n

}
B. One has

κ+
1 (A) = κ1(A) = max

j≤n
max
x
{xj : Ax = 0, ‖x‖ ≤ 1} = min

H
max
i,j
|[I −HTA]ij|

where the concluding equality is due to LP Duality Theorem.
C. It is easily seen that κ+

s (A) ≤ s
r
κ+
r (A) when 1 ≤ r ≤ s, and in particular

κ+
s (A) ≤ sκ+

1 (A).
As a result,

κ+
1 (A) <

1

2s
⇒ κ+

s (A) ≤ sκ+
1 (A) <

1

2
⇒ A is s-good

1.38

♠ Mutual Incoherence of A = [A1, ..., An] is defined as

µ(A) = max
i 6=j
|ATi Aj|/ATj Aj.

Setting H = 1
1+µ(A)

[
A1/(AT1A1), A2/(AT2A2), ..., An/(ATnAn)

]
:

— diagonal entries in HTA are 1
1+µ(A)

,

— magnitudes of off-diagonal entries in HTA are ≤ µ(A)
1+µ(A)

⇒H certifies that κ+
1 (A) ≤ µ(A)

µ(A)+1
⇒A is s-good whenever 2sµ(A)

µ(A)+1
< 1.

Note: When entries of A are drawn at random from N (0,1) or from Uniform{−1,1},
the typical value of µ(A) is as small as O(1)

√
ln(n)/m

⇒our simplified verifiable sufficient condition for s-goodness “κ+
1 (A) < 1

2s
” certifies that

a typical A from the random ensembles just specified is O(
√
m/ ln(n))-good.

1.39

Bad news: When A ∈ Rm×n is “essentially non-square,” namely, n ≥ 2m, our verifiable
sufficient condition can certify s-goodness only when s ≤ O(1)

√
m.

1.40

Indeed, assume that n ≥ 2m and H certifies that κ+
s (A) < 1/2. Setting n̄ = 2m and

denoting by D the angular n̄× n̄ submatrix of HTA, we have RankD ≤ m, whence In̄−D
has at least n̄−m ≥ m singular values ≥ 1 and thus

n̄∑
i,j=1

[In̄ −D]2
ij ≥ m.

On the other hand, it is easily seen that

u ∈ Rn̄ ⇒ ‖u‖2
2 ≤ max

[
n̄

s2
,1

]
‖u‖2

s,1,

and since

‖Colj[In̄ −D]‖s,1 ≤ ‖Colj[In −HTA]‖s,1 ≤ κ+
s (A) < 1/2,

we get ‖Colj[In̄ −D]‖2
2 ≤ max[n̄

s2 ,1] · 1
4
, whence

n̄∑
i,j=1

[In̄ −D]2
ij ≤ n̄max

[
n̄

s2
,1

]
·

1

4
= max

[
4m2

s2
,2m

]
·

1

4

Thus,

m ≤ max

[
m2

s2
,
m

2

]
⇒ s ≤

√
m.

1.41

“True” bounds on s-goodness

♣ It is known that m× n matrices from typical random ensembles, e.g., Gaussian (i.i.d.
entries ∼ N (0,1/m)) or Rademacher (i.i.d. entries taking values ±1/

√
m with proba-

bilities 1/2) with probability approaching 1 as m,n grow are s-good with s as large as
O(1)m/log(2n/m), which is by far better than the maximal level of goodness O(

√
m)

which can be certified by our verifiable sufficient conditions.
♠ Specifically, let us say that an m×n matrix A possesses Restricted Isometry Property
with parameters δ, k (A is RIP(δ, k) for short), if multiplying by A a k-sparse vector we
nearly preserve `2 norm:

(1− δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2 for all k-sparse vectors x

It is known that
A. A random Gaussian/Rademacher m× n matrix is, with probability approaching 1 as
m,n grow, RIP(0.1, k) with k as large as O(m/ ln(2n/m));

B. Whenever A is RIP(δ,2s) with δ < 1/3, A is s-good.

1.42

B. Whenever A is RIP(δ,2s) with δ < 1/3, A is s-good.

Verification of B: Let A be RIP(δ,2s), δ < 1/3, and let x ∈ Rn. Let x1 be obtained
from x by zeroing out all but the s largest in magnitude entries, x2 be obtained in the
same fashion from x − x1, x3 obtained in the same fashion from x − x1 − x2, etc. In
other words, if i1, i2, ..., in is the reordering of indexes such that |xi1| ≥ |xi2| ≥ |xi3| ≥ ...
and Ip = {i(p−1)s+1, ..., ips}, 1 ≤ p ≤ d =cn/sb, then xp = xIp.

We have ‖xp+1‖∞ ≤ ‖xp‖1/s, ‖xp+1‖1 ≤ ‖xp‖1 ⇒‖xp+1‖2 ≤
√
‖xp+1‖∞‖xp+1‖1 ≤ s−1/2‖xp‖1.

We further have

‖Axi‖2‖Ax‖2 ≥[Ax1]T [Ax] =
∑d

p=1[Ax1]T [Axp] ≥ ‖Ax1‖2
2 −

∑d
p=2 |[Ax1]T [Axp]| (∗)

Lemma: If A is RIP(δ,2s) and u, v are s-sparse with non-intersecting supports, then
|uTATAv| ≤ δ‖u‖2‖v‖2.

Indeed, Lemma states that if Q is symmetric matrix such that (1 − δ)yTy ≤ yTQy ≤ (1 + δ)yTy for all y,

then |uTQv| ≤ δ‖u‖2‖v‖2 whenever uTv = 0. This is evident, since from the premise it follows that the

eigenvalues of Q are in-between 1− δ and 1 + δ, whence the spectral norm of Q− I is ≤ δ, whence for u, v

in question |uTQv| = |uTv + uT(Q− I)v| = |uT(Q− I)v| ≤ δ‖u‖2‖v‖2.

Applying Lemma, (∗) leads to
‖Ax1‖2‖Ax‖2 ≥‖Ax1‖2 − δ

∑d

p=2
‖x1‖2‖xp‖2 ≥ ‖Ax1‖2

2 − δs−1/2‖x1‖2

∑d−1

p=1
‖xp‖1

⇒ ‖Ax1‖2 ≤ ‖Ax‖2 + δs−1/2 ‖x1‖2

‖Ax1‖2
‖x‖1 ⇒ ‖x1‖2 ≤ 1√

1−δ‖Ax‖2 + s−1/2 δ
1−δ‖x‖1

whence
‖x‖s,1 ≤s1/2‖x1‖2 ≤ s1/2

√
1−δ‖Ax‖2 + δ

1−δ‖x‖1 ⇒ κs(A) ≤ δ
1−δ < 1/2, βs(A, ‖ · ‖2) ≤ s1/2

√
1−δ .

1.43

‖x1‖2 ≤
1√

1− δ
‖Ax‖2 + s−1/2 δ

1− δ
‖x‖1 (!)

♠ Observing that ‖x1‖∞ ≤ ‖x1‖2, we derive from (!) that

‖x‖1,1 ≤
1√

1− δ
‖Ax‖2 +

s−1/2δ

1− δ
‖x‖1,

meaning that whenever A satisfies RIP(δ, k) with δ < 1/3, we have κ+
1 (A) ≤ s−1/2δ

1−δ , and

the corresponding certificate H of s-goodness can be chosen to have ‖Colj(H)‖2 ≤ 1√
1−δ,

1 ≤ j ≤ n.

1.44

Fact: Our verifiable sufficient condition for s-goodness, even in its simplest form, allows
to certify at least the square root of the goodness level as guaranteed by (heavily
computationally intractable) RIP.
On the other hand, whenever n ≥ 2m, our condition for s-goodness fails to certify
goodness level better than

√
m.

1.45

Numerical illustration:
Efficiently Computable Lower and Upper bounds on s∗(A) = max {s : A is s-good}

m LB I LB II UB

128 3 5 11
m× 256 random submatrix 178 3 7 16
of 256× 256 Fourier matrix 242 5 11 26

128 2 5 7
m× 256 random submatrix 178 4 9 15
of 256× 256 Hadamard matrix 242 12 26 31

128 1 5 15
m× 256 Rademacher matrix 178 2 8 24

242 2 23 47

128 1 5 14
m× 256 Gaussian matrix 178 2 8 24

242 2 23 47

LB I: Lower Bound on s∗(A) based on
Mutual Incoherence

LB II: Lower Bound on s∗(A) based on κ+
s (A)

UB: Upper Bound on S∗(A)

• κ+
s -based goodness bounds significantly outperform bounds based on mutual incoher-

ence
• Computability has its price: for random matrices, there is a significant gap between
upper and lower goodness bounds

1.46

Efficiently computable goodness bounds
m LB I LB II UB

102 2 2 8
204 2 4 18
307 2 6 30
409 3 7 44

m× 1024 Gaussian matrix 512 3 10 61
614 3 12 78
716 3 15 105
819 4 21 135
921 4 32 161

960× 1024 convolution matrix 960 0 5 7

• Matrices with “personal story” seem to have smaller and easier to estimate goodness
than random matrices of the same sizes.

1.47

♣ Note: At least in the case of random matrices A, there exists a significant gap
between s-goodness (the ability of `1 recovery to recover well all s-sparse signals in the
noiseless case) and “near s-goodness” – the ability of `1 recovery to reproduce well with
high reliability random s-sparse signals in the noiseless case.

♠ For a randomly selected 256× 512 submatrix A of the 512× 512 Hadamard matrix,
— lower bound on s-goodness, as given by the condition κ+

s (A) < 0.5, is s = 8
— upper bound on s-goodness is s = 15. Here is a badly recovered in the noiseless case
16-sparse signal:

0 100 200 300 400 500 600
−1.5

−1

−0.5

0

0.5

1

1.5

True 16-sparse signal (magenta) and its recovery (blue)

However, in a series of 100 experiments with noiseless `1 recovery of randomly generated
81-sparse signals, not a single erroneous recovery was observed!

1.48

Selected Engineering Applications of LP, II
Synthesis of Linear Controllers

♣ Consider time-varying discrete time linear dynamical system

x0 = z [initial state]

xt+1 = Atxt +Btut +Rtdt

 state equations
• xt: state • ut: control
• dt: external disturbance

yt = Ctxt +Dtdt [observed output]

“closed” by affine output-based control law

ut = gt +
∑t

τ=0
Gτ
t yτ . (∗)

♠ Given finite time horizon 0 ≤ t ≤ N , we want to specify a control law (∗) which
ensures that the state-control trajectory w = [x0; ...xN+1;u0; ...;uN] satisfies given design
specifications

aTi w ≤ bi, 1 ≤ i ≤ I (!)

for all “perturbations” ζ = [z; d0; ...; dN] from a given set Z (equivalent wording: satisfies
design specifications robustly w.r.t. ζ ∈ Z).
Good news: by linearity of the system and the control law, the trajectory is affine in
ζ: w = w0

γ +Wγζ, γ = {gt, Gτ
t : 0 ≤ τ ≤ t ≤ N}.

⇒The Analysis problem: check whether a given control law (∗) robustly meets the
design specifications reduces to verifying whether a system of affine constraints on ζ is
satisfied by all ζ ∈ Z. This is easy, provided Z is “tractable.”

1.49

• System:
x0 = z [initial state]

xt+1 = Atxt +Btut +Rtdt

 state equations
• xt: state • ut: control
• dt: external disturbance

yt = Ctxt +Dtdt [observed output]

• Controller: ut = gt +
∑t

τ=0G
τ
t yτ (∗)

• Trajectory: w = [x0; ...xN+1;u0; ...;uN] = w0
γ +Wγζ [γ = {gt, Gτ

t } : control law]
• Design specifications: aTi w ≤ bi, 1 ≤ i ≤ I (!)

♠ From now on, assume that Z is given by polyhedral representation:

Z = {ζ : ∃v : Pζ +Qv ≤ r}
Then to solve the Analysis problem: given control law, check whether (∗) ensures (!)
for all ζ ∈ Z is the same as to check whether

bi ≥ max
ζ,v

{
aTi [w0

γ +Wγζ] : Pζ +Qv ≤ r
}
, 1 ≤ i ≤ I.

⇒Verification requires solving I LO programs and is therefore easy.

1.50

x0 = z
xt+1 = Atxt +Btut +Rtdt
yt = Ctxt +Dtdt

(S)

ut = gt +
∑t

τ=0
Gτ
t yτ (∗)

Bad news: the trajectory is highly nonlinear in the parameters γ = {gt, Gτ
t } of the con-

trol law (∗). Indeed
• x0 = z is independent of γ ⇒ y0 is independent of γ ⇒u0 is affine in γ ⇒x1 is affine in γ
• x1 is affine in γ ⇒ y1 is affine in γ ⇒u1 is quadratic in γ ⇒x2 is quadratic in γ
• x2 is quadratic in γ ⇒ y2 is quadratic in γ ⇒u2 is cubic in γ ⇒x3 is cubic in γ

..
⇒xk is polynomial of degree k in γ

⇒The Synthesis problem: find control law (∗), if it exists, which robustly meets the
design specifications seems to be intractable.

1.51

x0 = z
xt+1 = Atxt +Btut +Rtdt
yt = Ctxt +Dtdt

(S)

ut = gt +
∑t

τ=0
Gτ
t yτ (∗)

Bad news: the trajectory is highly nonlinear in the parameters γ = {gt, Gτ
t } of the

control law (∗).
⇒The Synthesis problem: find control law (∗), if it exists, which robustly meets the
design specifications seems to be intractable.
Remedy: pass to affine purified-output-based control laws.
♠ Consider, along with system (S) “closed” by some control law, its model

x̂0 = 0
x̂t+1 = Atx̂t +Btut
ŷt = Ctx̂t

(M)

which we “feed” by the same controls ut as (S). We can run the model in an on-line
fashion, and thus at time t, before the decision on ut should be made, we have at our
disposal purified output vt = yt − ŷt
Observation: purified outputs are known in advance affine functions of ζ completely
independent on the control law in use
Indeed, setting ∆t = xt − x̂t, we clearly have

vt = Ct∆t +Dtdt with ∆t+1 = At∆t +Rtdt, ∆0 = z,

1.52

System: Model:
x0 = z

xt+1 = Atxt +Btut +Rtdt
yt = Ctxt +Dtdt

(S)
x̂0 = 0

x̂t+1 = Atx̂t +Btut
ŷt = Ctx̂t

(M)

Purified outputs: vt = yt − ŷt

ut =

{
gt +

∑t
τ=0G

τ
t yτ [output-based affine law] (∗)

ht +
∑t

τ=0H
τ
t vτ [purified-output-based affine law] (#)

Facts:

♥ Affine purified-output-based and output-based controls laws are equiv-

alent: every mapping ζ → w which can be obtained when “closing” (S)

by a law (∗), can be obtained by closing (S) by a law (#), and vice versa.

♥ When (S) is closed by an affine purified-output-based control law (#),

the trajectory w = W [ζ, η] becomes bi-affine in ζ and in the parameters

η = {ht, Hτ
t } of the control law:

w = w0[η] +W [η]ζ with w0[η], W [η] affine in η.

1.53

• ... purified outputs vt are known in advance linear functions of the external disturbances [z; d0; ...; dN]

⇒

• ut = ht +
∑t

τ=0
Hτ
t vt is bi-affine in [z; d0; ...; dN] and in η = {ht, Hτ

t : 0 ≤ τ ≤ t ≤ N}

• By linearity of the system, the trajectory w is linear in the vector

[z; d0; ...; dN ;u0; ...;uN], and with affine purified-output-based control. this

vector is bi-affine in [z; d0; ...; dN] and in η

⇒w is bi-affine in [z; d0; ...; dN] and in η,

as claimed.

1.54

The state-control trajectory of system “closed” with affine purified-output-based control
law with parameters η is bi-affine in ζ and in η:

w = w0[η] +W [η]ζ with known affine w0[·],W [·]
What we want:

Aw ≤ b ∀ζ ∈ Z = {ζ : ∃v : Pζ +Qv ≤ r}

Facts (continued):

♥ Sticking to purified-output-based control laws, the Synthesis problem

Given design specifications aTi w ≤ bi, i ≤ I, on the state-control

trajectory, find a control law, if one exists, which meets these

specifications robustly w.r.t. ζ = [z; d0; ...; dN] ∈ Z

becomes an infinite system of linear constraints on η:

aTi

[
w0[η] +W [η]ζ

]
≤ bi ∀ζ ∈ Z, 1 ≤ i ≤ I.

which is fact is equivalent to an explicit finite “moderate size” system of

linear constraints on ζ and additional variables.

1.55

Question: What the infinite system of linear constraints on η:

∀(ζ : ∃v : Pζ +Qv ≤ r) : aTi
[
w0[η] +W [η]ζ

]
≤ bi, i ≤ I

“wants” from η ?

Answer: It wants the optimal values in I feasible parametric LP’s:

Opti[η] = max
ζ,v

{
aTi W [η]ζ : Pζ +Qv ≤ r

}
= min

yi

{
rTyi : PTyi = WT [η]ai, Q

Tyi = 0, yi ≥ 0
}

[LP duality]

to satisfy the constraints aTi w
0[η] + Opti[η] ≤ bi, i ≤ I,

⇒ the set of desirable η admits polyhedral representation{
η : ∃y1, ..., yI :

PTyi = WT [η]ai, Q
Tyi = 0, yi ≥ 0

aTi w
0[η] + rTyi ≤ bi

}
︸ ︷︷ ︸

(S)

}

Bottom line: A purified-output-based affine control law with parameters

η meets the design specifications aTi w ≤ bi, 1 ≤ i ≤ I, robustly in ζ ∈ Z iff

η can be extended by properly chosen yi, i ≤ I, to a feasible solution of

(S).

1.56

How it Works: Controlling 3-Level Serial Inventory

F 3 2 1

3−LEVEL SERIAL INVENTORY

• Level 1 supplies external demand
• Level 2 supplies Level 1
• Level 3 supplies Level 2 and is supplied from Factory
• There is 2-period delay in executing replenishment orders

The Inventory can be modeled as the 9-state LDS
x1(t+ 1) = x1(t) + x1,1(t) −dt
x1,1(t+ 1) = x1,2(t)
x1,2(t+ 1) = u1(t)
x2(t+ 1) = x2(t) + x2,1(t) −u1(t)
x2,1(t+ 1) = x2,2(t)
x2,2(t+ 1) = u2(t)
x3(t+ 1) = x3(t) + x3,1(t) −u2(t)
x3,1(t+ 1) = x3,2(t)
x3,2(t+ 1) = u3(t)

y(t) = x(t)

• x1(t), x2(t), x3(t) — inventory levels at the beginning of period t

• u1(t), u2(t), u3(t) — replenishment orders of period t

• xp,1(t) := up(t− 2), xp,2(t) := up(t− 1), p = 1,2,3

• dt — demands

1.57

Bullwhip

♣ It is well known that serial inventories with delays (and supply chains in general) suffer
from bullwhip effect: variations of states (e.g., inventory levels) are severely amplified
when moving upward from external demand to production units along the supply chain.
This phenomenon badly affects the production.
• This is what happens with “naive” affine controller:

0 50 100 150 200 250
−200

−100

0

100

200

0 50 100 150 200 250
−200

−100

0

100

200

0 50 100 150 200 250
−1

−0.5

0

0.5

1

Bullwhip effect
Top: time-dependent demand dt ∈ [−1,1]
Middle: replenishment orders u1(t), u2(t), u3(t) ∈ [−110,110]
Bottom: inventory levels x1(t), x2(t), x3(t) ∈ [−200,200]

Note: variations of the demand in the range [−1,1] result in huge (hundreds!) oscilla-
tions in the level #3 and in the replenishment orders.

1.58

♥ To reduce the bullwhip effect, we can look for the best — with the largest decay
rate as certified by Lyapunov Stability Certificate, whatever it means — linear feedback
control law

u(t) = Ky(t) [= Kx(t)].

With this control, the picture looks much better:

0 50 100 150 200 250
−5

0

5

10

15

0 50 100 150 200 250
−15

−10

−5

0

5

0 50 100 150 200 250
−1

−0.5

0

0.5

1

Good linear feedback
Top: time-dependent demand dt ∈ [−1,1]
Middle: replenishment orders u1(t), u2(t), u3(t) ∈ [−15,5]
Bottom: inventory levels x1(t), x2(t), x3(t) ∈ [−5,15]

But: At the very beginning, we still have unpleasant jumps in the inventory levels and

replenishment orders.

1.59

♥ To improve the behaviour of the process in the beginning, we can use
purified-output-based affine control aimed at minimizing the initial jumps
and eventually switching to the above feedback control. This is what we
get:

0 50 100 150 200 250
−5

0

5

10

0 50 100 150 200 250
−2

−1

0

1

2

0 50 100 150 200 250
−1

−0.5

0

0.5

1

Combined p.o.b./feedback control
Top: time-dependent demand dt ∈ [−1,1]
Middle: replenishment orders u1(t), u2(t), u3(t)in
Bottom: inventory levels x1(t), x2(t), x3(t)

1.60

♥ This is what we gain in the beginning, while loosing nothing in the
long run:

0 5 10 15 20 25
−1

−0.5

0

0.5

1

0 5 10 15 20 25
−1

−0.5

0

0.5

1

0 5 10 15 20 25
−15

−10

−5

0

5

0 5 10 15 20 25
−2

−1

0

1

2

0 5 10 15 20 25
−5

0

5

10

15

0 5 10 15 20 25
−5

0

5

10

Pure feedback control (left)
vs.

combined p.o.b/feedback control (right)
Top: time-dependent demand varying in [−1,1]
Middle: replenishment orders u1(t), u2(t), u3(t)
Bottom: inventory levels x1(t), x2(t), x3(t)

1.61

From Linear to Conic Programming

♣ When passing from a generic LP problem
min
x

{
cTx : Ax− b ≥ 0

}
[A : m× n] (LP)

to nonlinear extensions, some components of the problem become non-
linear. The traditional way is to allow nonlinearity of the objective and
the constraints:

cTx 7→ c(x); aTi x− bi 7→ ai(x)
and to preserve the “coordinate-wise” interpretation of the vector in-
equality A(x) ≥ 0:

A(x) ≡

 a1(x)
...

am(x)

 ≥ 0⇔ ai(x) ≥ 0, i = 1, ...,m.

• An alternative is to preserve the linearity of the objective and the con-
straint functions and to modify the interpretation of the vector inequality
”≥”. In Convex Programming, both approaches are equivalent.
♣ The second option turns out to be more preferable, since it “reveals
the structure” of a convex program: an extremely wide variety of convex
programs can be captured by vector inequalities of just 3 ”standard” and
well understood types.

1.62

♣ As far as Convex Programming is concerned, “expressive abilities” of Linear, Conic
Quadratic and Semidefinite Programming are extremely strong.
Example: The messy problem

(o) minimize
n∑
`=1

x`

(a) x ≥ 0;

(b) aT` x ≤ b`, ` = 1, ..., n;

(c) ‖Px− p‖2 ≤ cTx+ d;

(d) x
1+1/`
` ≤ eT` x+ f`, ` = 1, ..., n;

(e) x
1/(`+3)
` x

`/(`+3)
`+1 ≥ gT` x+ h`, ` = 1, ..., n− 1;

(f)

x1 x2 x3 · · · xn
x2 x1 x2 · · · xn−1

x3 x2 x1 · · · xn−2
...
xn xn−1 xn−2 · · · x1

 � 0 & Det

x1 x2 x3 · · · xn
x2 x1 x2 · · · xn−1

x3 x2 x1 · · · xn−2
...
xn xn−1 xn−2 · · · x1

 ≥ 1;

(g) 1 ≤
n∑
`=1

x` cos(`ω) ≤ 1 + sin2(5ω)∀ω ∈
[
−π

7
,1.3

]
can be converted, in a systematic way, into an equivalent conic problem:
• (o–b) is just LP
• (o–e) is a Conic Quadratic problem
• (o–g) is a Semidefinite problem
⇒ seemingly highly diverse constraints of the original problem allow for unified treatment.

1.63

• A significant part of nice mathematical properties of an LP program
min
x

{
cTx : Ax− b ≥ 0

}
stems from the fact that the underlying coordinate-wise vector inequality

a ≥ b⇔ ai ≥ bi, i = 1, ...,m [a, b ∈ Rm]

satisfies a number of quite general axioms, namely:
I. It defines a partial ordering of Rm, i.e., is

I.a) reflexive: a ≥ a for all a ∈ Rm

I.b) anti-symmetric: if a ≥ b and b ≥ a, then a = b
I.c) transitive: if a ≥ b and b ≥ c, then a ≥ c

II. It is compatible with linear structure of Rm, i.e., is
II.a) additive: if a ≥ b and c ≥ d, then a+ c ≥ b+ d
II.b) homogeneous: if a ≥ b and λ is nonnegative real, then λa ≥ λb.

1.64

“Good” vector inequalities

• A vector inequality � on Rm is a binary relation – a set of ordered pairs (a, b) with
a, b ∈ Rm. The fact that a pair (a, b) belongs to this set is written down as a � b (”a
�-dominates b”).
• Let us call a vector inequality � good, if it satisfies the outlined axioms, namely, is
reflexive [a � a ∀a], antisymmetric [a � b& b � a⇒ a = b], transitive [a � b � c⇒ a � c],
additive [a � b& c � d⇒ a+ c � b+ d] and homogeneous [a � b&λ ≥ 0⇒ λa � λb].
Observation: A good vector inequality � on Rm is uniquely defined by the set

K = {a ∈ Rm : a � 0}
of all � 0-nonnegative vectors, specifically,

a � b⇔ a− b � 0⇔ a− b ∈ K
A set K ⊂ Rm specifies, in the above fashion, a good vector inequality iff K is a pointed
convex cone, that is,
• is nonempty,
• is conic: a ∈ K, λ ≥ 0 ⇒ λa ∈ K
• is convex,
• is pointed: a ∈ K and −a ∈ K iff a = 0,
or, equivalently, is a nonempty subset of Rm closed w.r.t. taking conic combinations
(linear combinations with nonnegative coefficients) of its elements and not containing
lines passing through the origin.

1.65

Example: The entrywise vector inequality ≥ stems from the nonnegative orthant Rm
+:

a ≥ b⇔ a− b ≥ 0⇔ a− b ∈ Rm
+ = {x ∈ Rm : xi ≥ 0,1 ≤ i ≤ m}.

The nonnegative orthant Rm
+, along with being a pointed convex cone, possesses two

additional properties:
• is closed, and
• possesses nonempty interior.
The first property allows to pass to termwise limits in ≥ inequalities:

ai ≥ bi & a = lim
i
ai & b = lim

i
bi ⇒ a ≥ b.

The second property allows to define strict version > of ≥:

a > b⇔ a− b ∈ intRm
+ [= {x ∈ Rm : xi > 0, i ≤ m}]

which is stable w.r.t. small enough perturbations of a, b.
It makes sense to incorporate these useful properties into the definition of a ”good”
vector inequality

1.66

Bottom line: From now on, a good vector inequality on Rm is the relation ≥K specified
by a regular cone (closed convex pointed cone with a nonempty interior) K ⊂ Rm

according to

a ≥K b⇔ a− b ≥K 0⇔ a− b ∈ K.

Along with ≥K, the cone K specifies the strict inequality >K:

a >K b⇔ a− b >K 0⇔ a− b ∈ intK.

Note: Arithmetics and elementary topology of good vector inequalities ≥K, >K is ex-
actly the same as for entrywise vector inequality ≥ (and the scalar ≥), e.g.
• sum of two valid nonstrict/strict K-inequalities is a valid nonstrict K-inequality, and
is strict, if at least one of the two inequalities we are summing up is strict;
• multiplying both sides of a valid nonstrict/strict K-inequality by a nonnegative real,
we get valid nonstrict K-inequality which is strict, provided that the real is positive and
the original inequality was strict;
• small enough perturbations in both sides of a valid strict K-inequality preserve in-
equality’s validity;
• if left- and right hand sides in a sequence of valid K-inequalities have limits, these
limits are linked by valid nonstrict K-inequality.

1.67

Facts:
A. The entrywise vector inequality

a ≥ b⇔ ai ≥ bi, i = 1, ...,m

is neither the only possible, nor the only interesting good vector inequality on Rm.
B. A good vector inequality ≥K gives rise to generic conic program

min
x

{
cTx : Ax− b ≥K 0

}
,

and these programs inherit significant part of nice theoretical properties of LP’s.
At the same time, ”playing with K” – working with regular cones different from non-
negative orthants – extends dramatically the scope of convex optimization problems we
can handle. Moreover, for all practical purposes just three ”magic” families of regular
cones cover the entire Convex Programming.

1.68

Magic families of cones, I
Nonnegative Orthants

♣ Direct products of nonnegative rays — nonnegative orthants — give rise to the
entrywise vector inequalities and thus – to generic Linear Programming problem

min
x∈Rn

{
cTx : Ax− b ≥ 0

}
[A ∈ Rm×n]

The nonnegative orthant R3

1.69

Magic families of cones, II
Direct products of Lorenz cones

♣ m-dimensional Lorentz cone (a.k.a. Second Order, or Ice-Cream, cone) is defined
as

Lm =

{
x = [x1; ...;xm] ∈ Rm : xm ≥

√∑m−1

i=1
x2
i

}

The ice-cream cone L3

1.70

♣ Direct products of Lorentz cones give rise to Conic Quadratic (a.k.a. Second
Order Conic) programs. A generic Conic Quadratic problem is of the form

min
x

{
cTx :

[
Dix+ di
eTi x+ fi

]
∈ Lmi

m︷ ︸︸ ︷
‖Dix+ di‖2 ≤ eTi x+ fi, 1 ≤ i ≤ m

}
m

min
x

c
Tx : Ax− b ≡

[
D1x+ d1

eT1x+ f1

]
...[

Dmx+ dm
eTmx+ fm

]
 ≥K 0

 ,

K = Lm1 × ...× Lmk

is a direct product of Lorentz cones

1.71

Magic families of cones, III
Directs products of semidefinite cones

♣ Semidefinite cone Sm+ lives in the space Sm of real symmetric m ×m matrices and
is comprised of all m×m symmetric matrices A which are positive semidefinite, that is,
produce everywhere nonnegative quadratic forms xTAx or, equivalently, have nonnegative
eigenvalues.

3 random 3D cross-sections of S3
+

1.72

♣ Direct products of semidefinite cones give rise to semidefinite programs

min
x

cTx : Ai(x) :=
∑
j

xjAij −Bi � 0, i ≤ I

 ,

where Aij, Bi are symmetric matrices of size mi, and P � Q (≡ Q � P) means that P,Q
are symmetric matrices of the same size such that P −Q is positive semidefinite.
Note: Semidefinite program is the program of minimizing a linear objective under the
bunch of LMI (Linear Matrix Inequality) constraints stating each that a variable sym-
metric matrix with entries affine in the decision vector x should be positive semidefinite.
Note: We can always write down a semidefinite program as a program with single LMI
constraint:

min
x

{
cTx : Ai(x) � 0, i ≤ m

}
⇔ min

x

{
cTx : A(x) := Diag{A1(x), ...,Am(x)} � 0

}
.

1.73

Conic Duality

• Let us look at the origin of the problem dual to an LP program

min
x

{
cTx : Ax− b ≥ 0

}
. (LPr)

Observing that any nonnegative “weight vector” y ∈ Rm
+ is “admissible” for the

constraint-wise vector inequality on Rm:

∀a, b, y ∈ Rm : a ≥ b & y ≥ 0⇒ yTa ≥ yT b︸ ︷︷ ︸
usual scalar
inequality

we conclude that all scalar linear inequalities of the type[
ATy

]T
x ≥ bTy with y ≥ 0

with variables x are consequences of the constraints of (LPr). Thus,
(*) If y ≥ 0 is such that ATy = c, then bTy is a lower bound on the optimal value in
(LPr).
• The LP dual to (LPr) is exactly the problem

max
y

{
bTy : ATy = c, y ≥ 0

}
(LDl)

of finding the best – the largest – lower bound on the optimal value of (LPr) among
those given by (*).

1.74

• Conic Duality, same as the LP one, is inspired by the desire to bound from below the
optimal value in a conic program

min
x

{
cTx : Ax− b ≥K 0

}
(CP)

and follows the just outlined scheme based on “conversion” of vector inequalities into
the scalar ones:

a ≥K b⇒ yTa ≥ yT b, (∗)
Crucial question is:

What are the ”aggregation weigths” y which make (∗) valid?
Answer: A necessary and sufficient condition for the implication (∗) to be true is

y ∈ K∗ := {y : yTx ≥ 0 ∀x ∈ K}
Note: K∗ is called the cone dual to K. Whenever K is a regular cone, so is K∗, and

K = (K∗)∗.

1.75

♠ We are ready to build the dual of a conic program. It is convenient to start with the
primal problem in the form

Opt(P) = min
x

{
cTx : Ax− b ∈ K, Rx = r

}
(P)

To build the dual, we equip the constraints of (P) with Lagrange multipliers
y ∈ K∗, s ∈ Rdim r

so that yT [Ax− b] + sT [Rx− r] ≥ 0 for every x feasible for (P).
Note: the ”aggregated constraint”

[ATy]Tx+ [RTs]Tx ≥ bTy + rTs,

by its origin is a consequence of the constraints of (P). Consequently, Whenever
ATy +RTs = c, the quantity bTy + rTs is a lower bound on Opt(P). The problem

max
y,s

{
bTy + rTs : y ∈ K∗, A

Ty +RTs = c
}

dual to (P) is to find the best – the largest – bound of this type.

1.76

♣ ”In real life” a conic problem arises as

Opt(P) = min
x

{
cTx : Aix− bi ∈ Ki, i ≤ m,Rx = r

}
(P)

that is, the associated regular cone is the direct product K = K1 × ...×Km. We clearly
have

K∗ = K1
∗ × ...×Km

∗ ,

implying that the recipe for building the dual problem is as follows:
• we equip conic constraints Aix − bi ∈ Ki with Lagrange multipliers yi ∈ Ki

∗, and the
linear equality constraints – with Lagrange multiplier s ∈ Rdim r

• we induce from the constraints of (P) that [yi]T [Aix − bi] ≥ 0 and sT [Rx − r] ≥ 0, so
that the aggregated constraint[∑

iA
T
i y

i +RTs
]T
x ≥

∑
i b
T
i y

i + rTs

is the consequence of the constraints of (P). In particular, whenever yi ∈ Ki
∗ and s

satisfy
∑

iA
T
i y

i + RTs = c, the quantity
∑

i b
T
i y

i + rTs is a lower bound on Opt(P). The
dual problem

Opt(D) = max
yi,s

{∑
i

bTi y
i + rTs : yi ∈ Ki

∗, i ≤ m,
∑
i

ATi y
i +RTs = c

}
is to find the best – the largest – of these lower bounds on Opt(P).
Note: The dual problem is conic along with the primal problem.
Note: The magic cones are self-dual, so that in this case (D) involves the same cones
as (P).

1.77

Opt(P) = minx
{
cTx : Ax− b ∈ K, Rx = r

}
(P)

Opt(D) = maxy,s
{
bTy + rTs : y ∈ K∗, ATy +RTs = c

}
(D)

♠ The origin of the dual problem yields the
Weak Duality Theorem: Opt(P) ≥ Opt(D).
Equivalently: The value of the primal objective cTx at every primal feasible solution (one
feasible for (P)) is ≥ the value of the dual objective bTy + rTs at every dual feasible
solution [y; s] (one feasible for (D)).
Equivalently: The duality gap

DualityGap(x; y, s) = cTx− [bTy + rTs]

evaluated at a primal-dual feasible pair x, [y; s], always is nonnegative.

1.78

Geometry of primal-dual pair of conic problems

Opt(P) = minx
{
cTx : Ax− b ∈ K, Rx = r

}
(P)

Ax− b ∈ K & Rx = r & y ∈ K∗ & ATy +RTs = c
⇒ cTx ≥ bTy + rTs

Opt(D) = maxy,s
{
bTy + rTs : y ∈ K∗, ATy +RTs = c

}
(D)

Assumption: The systems of linear equality constraints in (P) and (D) are solvable:
∃x̄, [ȳ, s̄] : Rx̄ = r, AT ȳ +RT s̄ = c.

A: Let us pass in (P) from variable x to primal slack η = Ax − b. Whenever x satisfies
Rx = r, we have

cTx = [AT ȳ +RT s̄]Tx = ȳTAx+ s̄TRx = ȳT [Ax− b] + [bT ȳ + rT s̄]

⇒ (P) is equivalent to the conic problem

Opt(P) = min
η

{
ȳTη : η ∈ [L − η̄] ∩K

}
, L = {Ax : Rx = 0}, η̄ = b−Ax̄[

Opt(P) = Opt(P)− [bT ȳ + rT s̄]
] (P)

Explanation: (P) wants of η := Ax− b (a) to belong to K, and (b) to be representable
as Ax−b for some x satisfying Rx = r. (b) says that η should belong to the primal affine
plane {Ax−b : Rx = r}, which is the shift of the parallel linear subspace L = {Ax : Rx = 0}
by a (whatever) vector from the primal affine plane, e.g., the vector −η̄ = Ax̄− b.

1.79

Opt(P) = minx
{
cTx : Ax− b ∈ K, Rx = r

}
(P)

Opt(D) = maxy,s
{
bTy + rTs : y ∈ K∗, ATy +RTs = c

}
(D)

B. Let us pass in (D) from variables [y; s] to variable y. Whenever [y; s] satisfies ATy +
RTs = c, we have

bTy + rTs = bTy + x̄TRTs = bTy + x̄T [c−ATy] = [b−Ax̄]Ty + cT x̄ = η̄Ty + cT x̄,

⇒ (D) is equivalent to the conic problem

Opt(D) = maxy
{
η̄Ty : y ∈ [L⊥ + ȳ] ∩K∗

}[
Opt(D) = Opt(D)− cT x̄

] (D)

Explanation: (D) wants of y (a) to belong to K∗, and (b) to satisfy ATy = c−RTs for
some s. (b) says that y should belong to the dual affine plane {y : ∃s : ATy +RTs = c},
which is the shift of the parallel linear subspace L̃ = {y : ∃s : ATy + RTs = 0} by a
(whatever) vector from the dual affine plane, e.g., the vector ȳ.
Elementary Linear Algebra says that L̃ = L⊥. Indeed,

[L̃]⊥ = {z : zTy = 0 ∀y : ∃s : ATy +RTs = 0} = {z : zTy + 0Ts = 0 whenever ATy +RTs = 0}
= {z : ∃x : [zT ,0] = xT [AT , RT]} = {z : ∃x : Ax = z,Rx = 0} = L.

1.80

Opt(P) = minx
{
cTx : Ax− b ∈ K, Rx = r

}
(P)

Opt(D) = maxy,s
{
bTy + rTs : y ∈ K∗, ATy +RTs = c

}
(D)

♣ Bottom line: Problems (P), (D) are equivalent, respectively, to

Opt(P) = minη
{
ȳTη : η ∈ [L − η̄] ∩K

}
(P)

Opt(D) = maxy
{
η̄Ty : y ∈ [L⊥ + ȳ] ∩K∗

}
(D)[

L = {Ax : Rx = 0}, Rx̄ = r, η̄ = b−Ax̄, AT ȳ +RT s̄ = c
]

Note: When x is feasible for (P), and [y; s] is feasible for (D), the vectors η = Ax− b,
y are feasible for (P), resp., (D), and

DualityGap(x; [y; s])= cTx− bTy − rTs = [ATy +RTs]Tx− bTy − rTs = [Ax− b]Ty =ηTy

⇒Geometrically, (P), (D) are as follows: ”geometric data” of the problems are the pair
of linear subspaces L, L⊥ in the space where K, K∗ live, the subspaces being orthogonal
complements to each other, and pair of vectors η̄, ȳ in this space.

• (P) is equivalent to minimizing f(η) = ȳTη over the intersection of K and the
primal feasible plane MP which is the shift of L by −η̄

• (D) is equivalent to maximizing g(y) = η̄Ty over the intersection of K∗ and the
dual feasible plane MD which is the shift of L⊥ by ȳ

• taken together, (P) and (D) form the problem of minimizing the duality gap
over feasible solutions to the problems, which is exactly the problem of finding
pair of vectors in MP ∩K and MD ∩K∗ as close to orthogonality as possible.

Pay attention to the ideal geometrical primal-dual symmetry we observe.

1.81

Primal-dual pair of conic problems on 3D Lorentz cone
Red: feasible set of (P) Blue: feasible set of (D)

P – optimal solution to (P); Q – optimal solution to (D).

Pay attention to orthogonality of
−−→
OP to

−−→
OQ

1.82

Conic Duality Theorem

♠ Definition. A conic problem of optimizing a linear objective under the constraints

Ax− b ∈ K, Rx = r

is called strictly feasible, if there exists a feasible solution x̄ which strictly satisfies the
conic constraint:

∃x̄ : Rx̄ = r & Ax̄− b ∈ intK.

• Assuming that the conic constraint is split into ”general” and ”polyhedral” parts:

K = M×Rk
+,

so that the feasible set is given by

A′x− b′ ∈M, A′′x− b′′ ≥ 0, Rx = r

the problem is called essentially strictly feasible, if there exists a feasible solution x̄ which
strictly satisfies the ”general” conic constraint:

A′x̄− b′ ∈ intM, A′′x̄− b′′ ≥ 0, Rx̄ = r.

1.83

• Finally, we say that a single conic constraint

Ax− b ∈ K (∗)
is essentially strictly feasible, if the regular cone K can be represented as K = M×Rk

+
in such a way that the constraint

Ax− b ∈ [intM]×Rk
+

is feasible.
Equivalently: Essential strict fesibility of (∗) means that K can be decomposed as K =
M×Rk

+, and the induced by this decomposition equivalent form

A′x− b′ ∈M, A′′x− b′′ ≥ 0[
Ax− b ≡

[
A′x− b′
A′′x− b′′

]]
of (∗) is such that

∃x̄ : A′x̄− b′ ∈ intM & A′′x̄− b′′ ≥ 0

1.84

Note: When the conic constraint in the primal problem allows for splitting into ”general”
and ”polyhedral” parts:

Opt(P) = min
x

{
cTx : Ax− b ∈ K, Px− p ≥ 0, Rx = r

}
(P)

then the dual problem reads

Opt(D) = max
y,z,s

{
bTy + pTz + rTs : y ∈ K∗, z ≥ 0, ATy + P Tz +RTs = c

}
(D)

so that its conic constraint also is split into ”general” and ”polyhedral” parts.

1.85

♠ Conic Duality Theorem Consider conic program along with its dual:

Opt(P) = minx
{
cTx : Ax− b ∈ K, Rx = r

}
(P)

Opt(D) = maxy,s
{
bTy + rTs : y ∈ K∗, ATy +RTs = c

}
(D)

Then
♠ Primal-Dual Symmetry: The duality is symmetric: (D) is conic along with (P) and
the problem dual to (D) is (equivalent to) (P).
♠ Weak Duality: One has Opt(D) ≤ Opt(P).
♠ Strong Duality: Assume that one of the problems (P), (D) is strictly feasible and
bounded, boundedness meaning on the feasible set the objective is bounded from below
in the minimization and from above - in the maximization case. Then the other problem
in the pair is solvable, and

Opt(P) = Opt(D).

In particular, if both problems are strictly feasible (and thus both are bounded by Weak
Duality), then both problems are solvable with equal optimal values.
In addition, if one of the problems is strictly feasible, then Opt(P) = Opt(D).

1.86

Refinement

Let the conic constraints in (P), (D) be split into ”general” and ”polyhedral” parts, so
that the problems read

Opt(P) = minx
{
cTx : Ax− b ∈ K, Px− p ≥ 0, Rx = r

}
(P)

Opt(D) = maxy,z,s
{
bTy + pTz + rTs : y ∈ K∗, z ≥ 0, ATy + P Tz +RTs = c

}
(D)

Then Strong Duality can be strengthened to the following claim: If one of the problems
is essentially strictly feasible and bounded, then the other problem is solvable, and

Opt(P) = Opt(D).

In particular, if both problems are essentially strictly feasible, both are solvable with
equal optimal values.
In addition, if one of the problems is essentially strictly feasible, then Opt(P) = Opt(D).

1.87

Note:
A. When no ”general” conic constraint is present (i.e., in the LP situation) Refined
Conic Duality Theorem is equivalent to LP Duality Theorem.
B. In general, the difference between the Strong Duality part of Conic duality Theorem
and LP Duality Theorem is that the former requires (essential) strict feasibility, while the
latter requires just feasibility. This difference ”reflects reality” – when at least one of
the primal-dual pair of problems is not essentially strictly feasible, various ”pathologies”
can arise. It can be shown by examples that it is possible that in a primal-dual pairs
(P), (D) of conic programs,
— one of the problems is strictly feasible and bounded (implying that the other problem
is solvable and Opt(P) = Opt(D)), but is not solvable;
— one of the problems is solvable, and the other one is infeasible,
— both problems are solvable, but with different optimal values: Opt(D) < Opt(P).

1.88

Corollary [Optimality Conditions in Conic Programming] Consider primal-dual pair of
conic problems

Opt(P) = minx
{
cTx : Ax− b ∈ K, Rx = r

}
(P)

Opt(D) = maxy,s
{
bTy + rTs : y ∈ K∗, ATy +RTs = c

}
(D)

and assume that both problems are essentially strictly feasible. A pair x, [y; s] of primal
and dual feasible solutions is comprised of optimal solutions to the respective problems
— [Zero Duality Gap] iff DualityGap(x, [y; s]) = cTx− [bTy + rTs] = 0, and
— [Complementary Slackness] iff yT [Ax− b] = 0.
Proof: We are in the situation when Opt(P) = Opt(D) by Strong Duality part of Conic
Duality Theorem. Consequently, for primal-dual feasible x, [y; s] it holds

DualityGap(x, [y; s]) =
[
cTx−Opt(P)

]
+
[
Opt(D)− bTy − rTs

]
By primal-dual feasibility, both brackets are nonnegative, and their sum can be 0 iff
cTx = Opt(P) and bTy + rTs = Opt(D), as claimed in Zero Duality Gap. Next, we have

DualityGap(x, [y; s]) = cTx− bTy − rTs = [ATy +RTs]Tx− bTy − rTs
= [Ax− b]Ty + [Rx− r]Ts = [Ax− b]Ty,

implying that Zero Duality Gap is equivalent, for primal-dual feasible x, [y; s], to Com-
plementary Slackness.

1.89

Example: Dual to the Steiner sum problem

♣ Steiner sum problem:

min
x∈Rn

∑m

i=1
‖x− ai‖2. [m > 1, a1, ..., am are distinct points in Rn]

“Cover story” (n = 2): There are m oil wells located at points a1, ..., am ∈ R2. Where
should one place an oil collector in order to minimize the total length of pipelines
connecting the wells to the collector?
♣ The problem can be reformulated as conic:

min
t1,..,tm,x

{∑m

i=1
ti : [x− ai; ti] ∈ Ln+1︸ ︷︷ ︸

⇔‖x−ai‖2≤ti

, i = 1, ...,m

}
(P)

Lorentz cones are self-dual, so that the problem dual to (S) is obtained by
— assigning the constraints [x − ai; ti] ∈ Ln+1 with Lagrange multipliers [yi; zi] ∈ Ln+1

giving rise to the aggregated constraint∑
i

[
[x− ai]Tyi] + tizi

]
≥ 0

⇔ [
∑

iy
T
i]x+

∑
iziti ≥

∑
iy
T
i ai

— imposing on the multipliers the restriction that the left hand side in the aggregated
constraint is, identically in the primal variables x, ti, equal to the primal objective

∑
iti,

which amounts to ∑
iyi = 0, z1 = ... = zm = 1

and maximizing under this restriction the right hand side of the aggregated constraint.
Thus, the dual problem reads

max
y1,...,ym

{∑
i
aTi yi :

∑
i
yi = 0, ‖yi‖2 ≤ 1, i ≤ m

}
(D)

1.90

Opt(P) = min
t1,..,tm,x

{∑m
i=1ti : [x− ai; ti] ∈ Ln+1, i = 1, ...,m

}
(P)

Opt(D) = maxy1,...,ym

{∑
ia
T
i yi :

∑
iyi = 0, ‖yi‖2 ≤ 1, i ≤ m

}
(D)

• (P) clearly is solvable and strictly feasible ⇒ (D) is solvable and Opt(P) = Opt(D).
• From optimality conditions it is easily seen that
— A point x distinct from a1, .., am is an optimal solution to the Steiner sum problem iff∑

i

ai − x
‖ai − x‖2

= 0.

— point x = a` is an optimal solution iff

‖
∑
i 6=`

ai − x
‖ai − x‖2

‖2 ≤ 1.

1.91

♠ In the simplest case of 3 points a1 = A, a2 = B, a3 = C in 2D plane, the optimal
solution is
— either the point from which all 3 sides of the triangle ∆ABC are seen at the angle
120o (such a point exists if angles of the triangle are < 120o)

X

A

B

C

— or the vertex of the triangle corresponding to the angle ≥ 120o, if such an angle is
present:

A

C

B=X

Note: Quoting “Fermat point” in Wikipedia, ”This question [to minimize the sum
of distances from a point to the vertices of triangle] was proposed by Fermat, as a
challenge to Evangelista Torricelli. He solved the problem in a similar way to Fermat’s
[...] His pupil, Viviani, published the solution in 1659.

1.92

Proof of Conic Duality Theorem

Opt(P) = minx
{
cTx : Ax− b ∈ K, Rx = r

}
(P)

Opt(D) = maxy,s
{
bTy + rTs : y ∈ K∗, ATy +RTs = c

}
(D)

Primal-Dual Symmetry: (D) is a conic problem. To write down its dual, we rewrite
it as a minimization problem

−Opt(D) = min
y,s

{
−bTy − rTs : y ∈ K∗, A

Ty +RTs = c
}

denoting the Lagrange multipliers for the constraints y ∈ K∗ and ATy + RTs = c by z
and −x, the dual to dual problem reads

max
z,x

{
− cTx : −Ax+ z = −b, z ∈ (K∗)∗[= K]︸ ︷︷ ︸

says that Ax− b ∈ K

,−Rx = −r
}
.

Eliminating z, we arrive at (P). �

Weak Duality: By construction of the dual. �

1.93

Opt(P) = minx
{
cTx : Ax− b ∈ K, Rx = r

}
(P)

Opt(D) = maxy,s
{
bTy + rTs : y ∈ K∗, ATy +RTs = c

}
(D)

Strong Duality [under strict, rather than essentially strict, feasibility] We should prove
that if one of the problems (P), (D) is strictly feasible and bounded, then the other
problem is solvable with Opt(P) = Opt(D), or, which is the same by Weak Duality, with
Opt(D) ≥ Opt(P). By Primal-Dual Symmetry, we lose nothing when assuming that (P)
is strictly feasible and bounded.
Step 0: Let us reduce the situation to the one when a strictly feasible solution to (P)
is the origin. Specifically, denoting by x̄ a strictly feasible solution to (P) and passing
in P from variable x to z = x− x̄, we arrive at the problem

[Opt(P)− cT x̄ =] Opt(P ′) = min
z

{
cTz : Az − [b−Ax̄] ∈ K, Rz = 0

}
(P ′)

with strictly feasible solution 0 and with the dual problem

Opt(D′) = max
y,s

{
[b−Ax̄]Ty : y ∈ K∗, A

Ty +RTz = c
}

(D′)

Note that the feasible sets of (D) and (D′) are the same, and on this feasible set, due
to Rx̄ = r, we have

[b−Ax̄]Ty = bTy + rTs− x̄T [ATy +RTs] = bTy + rTs− cT x̄,
implying that (D) and (D′) simultaneously are solvable/unsolvable, and their optimal
values, same as those of (P) and (P ′), differ by cT x̄, so that Opt(P) = Opt(D) is
equivalent to Opt(P ′) = Opt(D′).
Thus, it suffices to prove Strong Duality in the case when x̄ = 0.

1.94

Opt(P) = minx
{
cTx : Ax− b ∈ K, Rx = 0

}
(P)

Opt(D) = maxy,s
{
bTy : y ∈ K∗, ATy +RTs = c

}
(D)

x = 0 is strictly feasible solution to (P), that is

−b ∈ intK.

Step 1. Let L = {x : Rx = 0}. It may happen that c is orthogonal to L (”trivial
case”). In this case the primal objective vanishes on the primal feasible set, that is,
Opt(P) = 0, and c = RTs∗ for some s∗, implying that [y = 0; s∗] is a feasible solution to
(D) with zero value of the dual objective. Thus, Opt(D) ≥ 0 = Opt(P), implying that
Opt(D) = Opt(P) and the solution [0; s∗] is optimal for (D), so that Strong Duality
holds true in the trivial case.
Step 2. Now let the projection c̄ of c on L be nonzero, implying that the set

L− = {x ∈ L : c̄Tx < Opt(P)} = {x ∈ L : cTx < Opt(P)}
is nonempty. Note that the convex set M = {Ax− b : x ∈ L−} is nonempty and does not
intersect K. Consequently, M and K can be separated:

∃f 6= 0 : inf
z∈K

fTz ≥ sup
z∈M

fTz.

1.95

c̄Tx is nonconstant on L = {x : Rx = 0} (a)
f 6= 0 (b)

infz∈K fTz ≥ supx
{
fT [Ax− b] : Rx = 0, c̄Tx < Opt(P)

}
(c)

• K is a cone and inf in (c) is finite ⇒ this inf is zero and f ∈ K∗
⇒ sup in (b) is ≤ 0, so that (b) reads

0 ≥ sup
x
{[ATf]Tx : Rx = 0, c̄Tx < Opt(P)} − fT b. (d)

The maximization domain here is cut off linear space L = {x : Rx = 0} by strict linear
inequality c̄Tx < Opt(P) with nonconstant on L left hand side
⇒ (d) implies that the orthogonal projection of ATf onto L is αc̄ with some α ≥ 0
⇒ (d) reads

0 ≥ sup
x

{
αc̄Tx : Rx = 0, c̄Tx < Opt(P)

}
− fT b = αOpt(P)− fT b. (e)

Now, we have seen that f ∈ K∗ and f 6= 0 by (b), while −b ∈ intK ⇒ fT b < 0, implying
by (e) that α > 0.
Setting y = α−1f , we get y ∈ K∗, and (e) reads yT b ≥ Opt(P). Besides this, the
orthogonal projection of ATy onto L is exactly the orthogonal projection c̄ of c onto
L ⇒ATy − c is orthogonal to L = {x : Rx = 0} ⇒ATy +RTs = c for properly selected s
⇒ [y; s] is dual feasible with the value of dual objective Opt(D) = Opt(P).

1.96

• It remains to prove the if one of the problems (P), (D) is strictly feasible, then

Opt(P) = Opt(D).

Indeed, by Primal-Dual Symmetry we lose nothing when assuming that (P) is strictly
feasible. The case when (P) is also bounded has been considered; when (P) is un-
bounded, (D) is infeasible by Weak Duality; thus, in this case Opt(P) = Opt(D) = −∞.
�

1.97

Consequences of Conic Duality Theorem

Question: When a linear vector inequality

Ax ≥K b (I)

has no solutions?
Note: For λ ∈ K∗, the scalar inequality [ATλ]Tx ≥ bTλ is a consequence of (I).
⇒Sufficient condition for infeasibility: If by “admissible aggregation” of (I) one can
obtain a contradictory scalar inequality:

∃λ ≥K∗ 0 : ATλ = 0, λT b > 0. (II)

then (I) has no solutions.

1.98

Ax ≥K b (I)
λ ≥K∗ 0, ATλ = 0, λT b > 0 (II)

Conic Theorem on Alternative:
A. If (II) has a solution, then (I) has no solutions.
B. If (II) has no solutions, then (I) is ”almost solvable,” meaning that for every ε > 0,
you may perturb b by no more than ε to get a solvable system (I):

∀ε > 0 ∃(b′, x) : ‖b− b′‖ ≤ ε & Ax ≥K b′.

C. (II) has no solutions iff (I) is almost solvable.

1.99

Ax ≥K b (I)
λ ≥K∗ 0, ATλ = 0, λT b > 0 (II)

Proof of CTA: Let us fix f >K 0, and consider the conic program

Opt = min
t,x
{t : Ax ≥K b− tf} (P)

Since f >K 0, all pairs [x = 0; t] with large enough positive t are strictly feasible solutions to (P) (since
for large t > 0 we have tf − b = t(f − t−1b) >K 0).
Claim: (I) is almost solvable iff Opt ≤ 0.
One direction: If Opt ≤ 0, then for every δ > 0 (P) has a feasible solution with t ≤ δ, and, in addition,
(P) has a feasible solution with some nonnegative t. Since the feasible set of (P) is convex, for every
δ > 0 (P) has a feasible solution xδ, tδ with tδ ∈ [0,2δ] ⇒ bδ := b − tδf is such that Axδ ≥K bδ. Since
‖bδ − b‖ = tδ‖f‖ ≤ 2δ‖f‖ and δ can be made arbitrarily small, (I) is almost solvable.
Opposite direction: If (I) is almost solvable, then for every δ > 0 there exist bδ, xδ such that Axδ ≥K bδ
and ‖b− bδ‖ ≤ δ. Since f >K 0, K contains a ball of radius r > 0 centered at f , or, equivalently,

‖d‖
r
f ≥K d∀d.

In particular, Axδ ≥K bδ ⇒ Axδ ≥K b+ [bδ − b] ≥K b− ‖b−bδ‖
r

f ≥K b− δ
r
f, whence Opt ≤ δ/r for all δ > 0, that

is, Opt ≤ 0.
Claim ⇒CTA: (P) is strictly feasible, so that by Conic Duality Theorem Opt ≤ 0 iff the optimal value
in the problem

max
λ
{bTλ : Aλ = 0, λ ∈ K∗, f

Tλ = 1} (D)

dual to (P) is ≤ 0. The latter is the case iff bTλ ≤ 0 for every nonzero λ ∈ K∗ such that Aλ = 0 (since
for such λ it holds fTλ > 0, so that after multiplying y by a positive scalar it becomes feasible for (D)),
which is exactly the same as to say that (II) has no solutions. �

1.100

Ax ≥K b (I)
λ ≥K∗ 0, ATλ = 0, λT b > 0 (II)

CTA vs. GTA: ”Polyhedral analogy” of CTA is General Theorem on Alternative
restricted to the situation where the system of (scalar) linear inequalities for which we
want to certify insolvability contains nonstrict inequalities only. In this situation GTA is
stronger than item C in CTA – in GTA ”almost solvable” is simply ”solvable.”
♠ In the general conic case, ”almost solvable” cannot be strengthened to ”solvable,”
as is seen from the following example: the linear vector inequality with one variable

Ax− b := [3; 4; 5] · x− [4;−3; 0] = [3x− 4; 4x+ 3; 5x] ≥L3 0 (I)

reads

25x2 ≥ (3x− 4)2 + (4x+ 3)2︸ ︷︷ ︸
25x2+25

& 5x ≥ 0

and has no solutions. However, with bε = [4;−3 + ε; 0], the inequality Ax− bε ≥L3 0 reads

25x2 ≥ (3x− 4)2 + (4x+ 3− ε)2︸ ︷︷ ︸
25x2−8εx+16+(3−ε)2

& x ≥ 0

and becomes solvable whenever ε > 0.
⇒ (I) is unsolvable and almost solvable, implying that the “alternative” to (I) system

λ ≥L3 0, ATλ = 0, bTλ > 0 (II)
has no solutions.

1.101

Geometrically: Consider 2D plane which intersects the boundary of L3 along (branch
of) hyperbola. Let x ∈ R, and let the line ` = {Ax− b : x ∈ R} in R3 be the asymptote
of the hyperbola. Then ` does not intersect the cone; however, since the hyperbola is
in the cone and ` is the asymptote of the hyperbola, appropriate, whatever small, shifts
of ` make it intersecting the cone.

1.102

Ax ≥K b (I)
λ ≥K∗ 0, ATλ = 0, λT b > 0 (II)

What is going on: The set of those b’s for which (I) is solvable is the convex set

B = {b = Ax− u, x ∈ Rn, u ∈ K},
and the set B∗ of those b’s for which (I) is almost solvable is the set of b’s which can
be approximated to whatever high accuracy by points from B, that is, B∗ is the closure
of B.
By item C of CTA, (II) is solvable whenever b is outside of B∗. When B is closed, to be
outside of B and of B∗ is one and the same
⇒When the set of those b’s for which (I) is solvable is closed, (II) is solvable whenever
(I) is unsolvable.
However, B is not necessarily closed, so that in general solvability of (II) is only sufficient,
but not necessary, condition for insolvability of (I).
When K = {u : Pu ≤ p} is a polyhedral cone, B is polyhedral – as the arithmetic sum of
two polyhedral sets, B admits an immediate polyhedral representation:

B = {b : ∃u, x : b = Ax− u, Pu ≤ p}
⇒B is automatically closed.

1.103

Question: When a scalar inequality

cTx ≥ d (S)

is a consequence of a vector inequality

Ax ≥K b ? (V)

Answer: A. If (S) can be obtained from (V) and the trivial inequality 0 ≥ −1 by
”admissible linear aggregation:”

∃y ≥K∗ 0 : ATy = c & yT b ≥ d, (∗)
then (S) is a consequence of (V).
B. If (S) is a consequence of (V) and (V) is essentially strictly feasible, then (S) can
be obtained from (V) by admissible linear aggregation.
Both claims are immediate consequences of the Refined Conic Duality Theorem as
applied to the conic problem

Opt(P) = min
x

{
cTx : Ax ≥K b

}
— (S) is exactly the same as Opt(P) ≥ d, and A, B is what Weak, respectively, Strong,
Duality says.

1.104

II. CONIC QUADRATIC
PROGRAMMING

♣ The m-dimensional Lorentz cone is

Lm = {x = [x1; ...;xm] ∈ Rm : xm ≥
√
x2

1 + ...+ x2
m−1}

By definition, L1 = R+ (”empty sum equals zero”).
A conic quadratic problem is a conic problem

min
x

{
cTx : Ax− b ≥K 0

}
(CP)

for which the cone K is a direct product of Lorentz cones:

K = Lm1 × Lm2 × ...× Lmk =

y =

 y[1]
y[2]
...
y[k]

 : y[i] ∈ Lmi, i = 1, ..., k

 .

• Thus, a conic quadratic problem is an optimization problem with linear objective and
finitely many “conic quadratic constraints”:

min
x

{
cTx : Aix− bi ≥Lmi 0, i = 1, ..., k

}
. (∗)

2.1

min
x

{
cTx : Aix− bi ≥Lmi 0, i = 1, ..., k

}
. (∗)

Representing

[Ai, bi] =

[
Di di
pTi qi

]
(qi is a real), we may rewrite (*) as

min
x

{
cTx : ‖Dix− di‖2 ≤ pTi x− qi︸ ︷︷ ︸

m
Aix− bi ≥Lmi 0

, i = 1, ..., k

}
. (CQ)

• A scalar linear inequality aTx − b ≥ 0 is the same as the conic quadratic inequality
aTx − b ∈ L1, so that adding to (CQ) finitely many scalar linear inequalities, we do not
vary the structure of the problem.

2.2

Problem dual to Conic Quadratic Problem

min
x

{
cTx : ‖Dix− di‖2 ≤ pTi x− qi︸ ︷︷ ︸

m
[Di; pTi]x− [di; qi] ≥Lmi 0

, i = 1, ..., k

}
. (CQ)

Fact: Lorentz cones are self-dual: (Lm)∗ = Lm.
Indeed,

(Lm)∗ = {[y; s] : [y; s]T [x; t] ≥ 0∀(x, t : ‖x‖2 ≤ t)} = {[y; s] : [y; s]T [x; 1] ≥ 0 ∀(x : ‖x‖2 ≤ 1)}
= {[y; s] : s ≥ max‖x‖2≤1[−yTx] = {[y; s] : s ≥ ‖y‖2}.

⇒The problem dual to (CQ) reads

max
[yi;si],i≤k

{∑
i

[yTi di + siqi] : ‖yi‖2 ≤ si, i ≤ k,
∑
i

[DT
i yi + sipi] = c

}

2.3

Examples of CQP’s, I
Stable Grasp

♣ When an N-finger robot is capable to hold a rigid body?
This is what happens at i-th contact point:

O

Fi

p

v

i
i

i

f

pi: the contact point; f i: the contact force; νi: the unit inward normal to body’s surface

♣ [Coulomb’s Law] The friction force F i caused by the contact force f i is tangent to
the surface of the body at pi:

(F i)Tνi = 0,
and its magnitude is bounded by constant times the normal component of the external
force:

‖F i‖2 ≤ µ(f i)Tνi [µ > 0: friction coefficient]

2.4

♣ Assume that the body is affected by additional external forces (e.g., the gravity ones).
From the viewpoint of Mechanics, all these forces can be represented by a single external
force F ext (the sum of actual external forces) – and a torque T ext (the sum of vector
products of the actual external forces and the points where the forces are applied).

The body can be in static equilibrium iff the total force acting at the body and the total
torque are zero: ∑N

i=1(f i + F i) + F ext = 0∑N
i=1 p

i × (f i + F i) + T ext = 0
u× v: vector product of u, v ∈ R3

(1)

♣ Assume f i, F ext, T ext are given. The nature will try to adjust the friction forces F i to
satisfy the equilibrium constraints (1) along with the ”friction constraints”

[νi]TF i = 0, ‖F i‖2 ≤ µ[νi]Tf i, i = 1, ..., N (2)

If it is possible, the body will be held by the robot (“stable grasp”), otherwise it will
somehow move.

2.5

Conclusion: Possibility of stable grasp is equivalent to solvability of system of conic
quadratic constraints ∑N

i=1(f i + F i) + F ext = 0,∑N
i=1 p

i × (f i + F i) + T ext = 0,
[νi]TF i = 0, ‖F i‖2 ≤ µ[νi]Tf i

 , i = 1, ..., N

with variables F i, i = 1, ..., N .
⇒Various grasp-related optimization problems, like

Given
— external force F ext,
— the direction eext of external torque,
— the directions ui of forces exerted by robot’s fingers,
— ranges [0, f imax] of magnitudes of the forces exerted by robot’s fingers:

f i = λiu
i, λi ∈ [0, f imax],

find the largest possible magnitude T of the external torque still allowing for
stable grasp.

can be posed as conic quadratic problems.

2.6

Example. A 4-finger robot should hold a cylinder:

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

T

F

ff

f f

f

f

T

F
g

g

2

3 4

1

3

1

Perspective, front and side views

The external torque is directed along the cylinder axis. What is the largest magnitude
of the torque still allowing for stable grasp?

This is the conic quadratic problem

max
T,F i,λi

T :

∑
i(λiu

i + F i) + F ext = 0∑
i p
i × (λiui + F i) + Teext = 0

‖F i‖2 ≤ µ[νi]Tuiλi, [νi]TF i = 0, i ≤ N
0 ≤ λi ≤ f imax, , i ≤ N

 .

2.7

Examples of CQP’s, II
Estimating state of Linear Dynamical System

♣ Consider discrete time Linear Dynamical System with linear output-based feedback

x0 = z
xt+1 = Axt +But +Dδt
yt = Cxt + εt
ut = Kyt[

• xt: states • ut: controls; • yt: observed outputs
• δt: disturbances • εt: observation errors

]
on time horizon 0 ≤ t ≤ N .
Assuming the dynamics A,B,C,D and feedback K known in advance, and observation
errors, and disturbances bounded:

‖εt‖2 ≤ ε, ‖δt‖2 ≤ δ, 0 ≤ t ≤ T
[ε, δ: known bounds]

we want given y0, ..., yN , to localize xN+1 in the smallest possible box {x : a ≤ x ≤ b}.

2.8

x0 = z
xt+1 = Axt +But +Dδt,
yt = Cxt + εt
ut = Kyt

 (∗)

[
• xt: states • ut: controls; • yt: observed outputs

• δt, ‖δt‖2 ≤ δ: disturbances • εt, ‖εt‖2 ≤ ε: observation errors

]
Given A,B,C,D,K, observations yt, 0 ≤ t ≤ N , and δ, ε, find the smallest box {x : a ≤
x ≤ b} localizing xN+1.
♠ Solution: Finding the smallest box localizing xN+1 reduces to minimizing several
linear forms eTxN+1 over vectors xN+1 compatible with observations yt and bounds on
observation errors and disturbances, or, equivalently, to solving several conic quadratic
problems of the form

min
z,xt,ut
εt,δt

{
eTxN+1 s.t. (∗) & ‖δt‖2 ≤ δ,0 ≤ t ≤ N & ‖εt‖2 ≤ ε,0 ≤ t ≤ N

}
Note: In the problems, yt’s are not optimization variables, they are given data!

2.9

What can be expressed via conic quadratic constraints?

♣ Normally, an initial form of an optimization model is

min{f(x) : x ∈ X}, X =
m⋂
i=1

Xi [usually Xi = {x : gi(x) ≤ 0}]

We can always make the objective linear:

min
x∈X

f(x)⇔ min
y=[x;t]∈Y

t [Y = {[x; t] : x ∈ X, t ≥ f(x)}]

From now on, assume that the objective is linear, so that the original problem is

min
x

{
cTx : x ∈ X

} [
X =

⋂m
i=1Xi

]
(Ini)

♣ Question: When (Ini) can be reformulated as a conic quadratic problem?

2.10

min
x

{
cTx : x ∈ X

} [
X =

⋂m
i=1Xi

]
(Ini)

Question: When (Ini) can be reformulated as a conic quadratic problem?
♣ Answer: This is the case when X is a Conic Quadratic representable (CQr) set.
Definition. Let X ⊂ Rn. We say that X is CQr, if X admits Conic Quadratic
Representation (CQR)

X = {x ∈ Rn : ∃u ∈ Rm : Px+Qu− r ∈ K}, (CQR)

where K is a direct product of Lorentz cones, that is, X can be represented as a
projection onto the plane of x-variables of the solution set of a conic constraint in
(x, u)-variables, the cone being a direct product of Lorentz cones.
Equivalently: X ⊂ Rn is CQr ⇔ x ∈ X if and only if x can be extended, by properly
selected ”certificate” u ∈ Rm, to a solution to a system of conic quadratic inequalities
in variables x, u. Every system with this property is a Conic Quadratic Representation
of X.

2.11

X = {x ∈ Rn : ∃u ∈ Rm : Px+Qu− r ∈ K}, (CQR)

Immediate observation: Given Conic Quadratic Representation (CQR) of X, the
problem minx∈X cTx is equivalent to the conic quadratic program

min
x,u

{
cTx : Px+Qu− r ∈ K

}
,

equivalence meaning that x is feasible for the former problem iff x can be extended to a
feasible solution to the latter problem. Note that this extension preserves the value of
the objective.

2.12

Example: Consider the program

min
x

{
x : x2 + 2x4 ≤ 1

}
(Ini)

A CQR for X = {x : x2 + 2x4 ≤ 1} can be obtained as follows:

x2 + 2x4 ≤ 1⇔ ∃t1, t2 :

 x2 ≤ t1
t21 ≤ t2

t1 + 2t2 ≤ 1

and

s2 ≤ r ⇔ 4s2 + (r − 1)2 ≤ (r + 1)2 ⇔

 2s
r − 1
r + 1

 ≥L3 0,

⇒ X =

x : ∃t1, t2 :

[
2x

t1 − 1
t1 + 1

]
≥L3 0︸ ︷︷ ︸

“says” that x2 ≤ t1

,

[
2t1
t2 − 1
t2 + 1

]
≥L3 0︸ ︷︷ ︸

“says” that t21 ≤ t2

, t1 + 2t2 ≤ 1

,

and (Ini) is the conic quadratic program

min
x,t1,t2

x :

 2x
t1 − 1
t1 + 1

 ≥L3 0,

 2t1
t2 − 1
t2 + 1

 ≥L3 0, t1 + 2t2 ≤ 1

 .

2.13

Definition. Let f : Rn → R ∪ {+∞} be a function. We say that f is Conic Quadratic
representable (CQr), if its epigraph

Epi{f} = {[x; t] ∈ Rn ×R : f(x) ≤ t}
is a CQr set. Every CQR of Epi{f} is called a Conic Quadratic Representation (CQR)
of f .
Thus, CQR of f is the equivalence

t ≥ f(x)⇔ ∃u : Px+ tp+Qu− r ∈ K,

where K is a direct product of Lorentz cones.
Example: The function f(x) = x2 + 2x4 : R→ R is CQr:

t ≥ x2 + 2x4 ⇔ ∃t1, t2 :

 2x
t1 − 1
t1 + 1

 ≥L3 0,

 2t1
t2 − 1
t2 + 1

 ≥L3 0, t1 + 2t2 ≤ t

Immediate Observation: Level sets {x : f(x) ≤ a} of a CQr function f : Rn → R are
CQr sets with CQR’s readily given by a CQR of f :

t ≥ f(x)⇔ ∃u : Px+ pt+Qu− r ∈ K︸ ︷︷ ︸
⇓

{x : f(x) ≤ a} = {x : ∃u : Px+ pa+Qu− r ∈ K}

2.14

Immediate Observation: Given CQR’s of a CQr function f and a CQr set X, mini-
mization of f over X reduces straightforwardly to a conic quadratic problem:[

t ≥ f(x)⇔ ∃u : Pfx+ tpf +Qfu− rf ∈ Kf

x ∈ X ⇔ ∃v : PXx+QXv − rX ∈ KX

]
︸ ︷︷ ︸

⇓

min
x∈X

f(x)⇔ min
t,x,u,v

{
t :

Pfx+ tpf +Qfu− rf ∈ Kf

PXx+QXv − rX ∈ KX

}

2.15

• Polyhedral representation of a set X:

X = {x ∈ Rn : ∃u ∈ Rk : aTi x+ bTi u− ci ≥ 0, i ≤ m} (P)

• Conic Quadratic representation of a set X:

X = {x ∈ Rn : ∃u ∈ Rk : dTi x+ eTi u+ fi − ‖ATi x+BT
i u− ci‖2 ≥ 0, i ≤ m} (CQ)

Note: Representations have similar structure, with scalar linear inequalities in (P) sub-
stituted with conic quadratic inequalities in (CQ).
♠ But:
• By Fourier-Motzkin, linear inequalities in variables x, u in (P) can be replaced with
(perhaps, a much larger set of) linear inequalities in variables x only, so that the only
(important!) role of polyhedral representability, as opposed to plain polyhedrality, is in
allowing for more flexible and compact representations of polyhedral sets.
• There is no analogy of Fourier-Motzkin in the case of conic quadratic inequalities
– a set X admitting representation (C) not always can be described by finite system of
conic quadratic inequalities in x-variables only, so that allowing for u-variables extends
dramatically the scope of Conic Quadratic Programming.

2.16

Calculus of CQr functions/sets

Fact: CQr functions/sets admit a fully algorithmic calculus: basic convexity-preserving
operations with functions/sets as applied to CQr operands, produce CQr results, and
CQR’s of these results are readily given by CQR’s of the operands.
Note: ”Convexity-preserving” is crucial here: convexity is built-in property of CQr
functions/sets, so that operations which do not preserve convexity (like taking union of
two sets) do not preserve, in general, conic quadratic representability.

2.17

Calculus of CQR’s: Raw Materials. The following functions/sets are CQr with
explicit CQr’s:
1. Closed half-spaces and affine functions

X = {x : aTx− b ≥ 0} — this is CQR

Epi{aTx+ b} = {[x; t] : t− aTx− b ≥ 0} — this is CQR

2. Lorentz cone Ln+1 and Euclidean norm f(x) = ‖x‖2 : Rn → R:

Ln+1 = {y ∈ Rn+1 : y ∈ Ln+1} [tautology!]

Epi{f} := {[x; t] : t ≥ ‖x‖2} = {[x; t] ∈ Ln+1}
3. Squared Euclidean norm f(x) = xTx : Rn → R:

t ≥ xTx⇔ (t+ 1)2 ≥ (t− 1)2 + 4xTx⇔ [2x; t− 1; t+ 1] ∈ Ln+2[
Note useful identity: 4rs = (r + s)2 − (r − s)2 ∀r, s ∈ R

]

2.18

4. Fractional-quadratic function f(x, s) =

xTx
s
, s > 0

0, x = 0, s = 0
+∞, all remaining cases

[x ∈ Rn, s ∈ R]:

f(x, s) ≤ t⇔ {xTx ≤ ts & s ≥ 0, t ≥ 0}

⇒ Epi{f} = {[x; s; t] : [2x; t− s; t+ s] ∈ Ln+2}
5. Branch of hyperbola {(t, s) ∈ R2 : ts ≥ 1, t, s ≥ 0} :

{(t, s) : ts ≥ 1, t, s ≥ 0} = {(t, s) : [2; t− s; t+ s] ∈ L3}
6. Rotated Lorenz cone X = {̈̈[x; t; s] : xTx ≤ ts, t, s ≥ 0} ⊂ Rn ×R×R:

{[x; t; s] : xTx ≤ ts, t, s ≥ 0} = {[x; t; s] : [2x; t− s; t+ s] ∈ Ln+2}
(cf. item 4: Rotated Lorentz cone is the epigraph of fractional-quadratic function)

2.19

Operations preserving CQ-representability of sets

S.A. Taking finite intersections: Intersection of CQr sets Xi, i ≤ N , is CQr:

Xi =
{
x ∈ Rn : ∃ui : Pix+Qiu

i − ri ∈ Ki

}
, i ≤ N︸ ︷︷ ︸

⇓⋂
i≤N

Xi = {x : ∃u = [u1; ...;uN] : Pix+Qiui − ri ∈ Ki, i ≤ N}

In particular, a polyhedral set {x : Ax − b ≥ 0} is CQr (as the intersection of closed
half-spaces, which are CQr), and intersecting a CQr set with the solution set of a finite
system of nonstrict linear inequalities preserves CQ-representability.
S.B. Taking direct products. Direct product of CQr sets Xi ⊂ Rni, i ≤ N , is CQr:

Xi = {xi ∈ Rni : ∃ui : Pix
i +Qiu

i − ri ∈ Ki}, i ≤ N︸ ︷︷ ︸
⇓

X1 × ...×XN := {[x1; ...;xN] : xi ∈ Xi} = {[x1; ...;xN] : ∃u = [u1; ...;uN] : Pixi +Qiui − ri ∈ Ki, i ≤ N}

2.20

S.C. Taking affine images: If X ⊂ Rn is CQr and x 7→ Ax + b : Rn → Rk is an affine
mapping, then the set AX + b := {y = Ax+ b : x ∈ X} is CQr:

X = {x : ∃u : Px+Qu− r ∈ K}︸ ︷︷ ︸
⇓

AX + b = {y : ∃[x;u] : y = Ax+ b︸ ︷︷ ︸
m

y − [Ax+ b] ∈ Rk
+,

[Ax+ b]− y ∈ Rk
+

, Px+Qu− r ∈ K}

and all cones involved are direct products of Lorentz cones.
Corollary: Let S be a finite system of conic quadratic inequalities in variables (x, u).
Then the set

X = {x : ∃u : (x, u) solves S}
is CQr.
Indeed, the solution set Y of (S) clearly is CQr with CQR given by (S), and X is the
linear image of Y .
S.D. Taking inverse affine images. If X ⊂ Rn is CQr and y 7→ A(y) = Ay+b : Rk → Rn

is an affine mapping, then the set A−1(X) := {y : Ay + b ∈ X} is CQr:

X = {x : ∃u : Px+Qu− r ∈ K}︸ ︷︷ ︸
⇓

A−1(X) = {y : ∃u : P [Ay + b] +Qu− r ∈ K}

2.21

S.E. Taking arithmetic sums: If sets Xi ⊂ Rn, i = 1, ..., N , are CQr, so is their
arithmetic sum X = X1 + ...+XN := {x = x1 + ...+ xN : xi ∈ Xi, i = 1, ..., N} :

Xi = {x : ∃ui : Pix+Qiu
i − ri ∈ Ki}, i ≤ N︸ ︷︷ ︸

⇓
X1 + ...+XN = {x : ∃xi, ui, i ≤ N : Pixi +Qiui − ri ∈ Ki, i ≤ N, x =

∑
i
xi}

Alternatively: X is the image of the direct product Y = X1 × ... × XN under the linear
mapping

y ≡ (x1, ..., xN) 7→ x1 + ...+ xN ,

and both operations preserve CQ representability.

2.22

♣ Several more advanced convexity-preserving operations ”behave well” on CQr sets
under mild regularity assumptions:
S.F∗. Passing from a set to its support function and polar. Let X ⊂ Rn be a
nonempty convex set. Its support function is defined as

φX(y) = sup
x

{
yTx : x ∈ X

}
: Rn → R ∪ {+∞}.

The support function of X is the same as the support function of the closure of X, and
the function ”remembers” this closure: if X,X ′ are nonempty convex sets, then φX ≡ φX ′

iff clX = clX ′.
Fact: If X ⊂ Rn is a nonempty convex set given by essentially strictly feasible CQR,
then φX(·) is CQr:

X = {x : ∃u : Px+Qu− r ∈ K}︸ ︷︷ ︸
⇓

t ≥ φX(y) ⇔ t ≥ supx,u
{
yTx : Px+Qu ≥K r

}
⇔ t ≥ minλ

{
−rTλ : P Tλ+ y = 0, QTλ = 0, λ ∈ K∗

}
⇔

{
[y; t] : ∃λ : P Tλ+ y = 0, QTλ = 0, t+ rTλ ≥ 0, λ ∈ K∗ [= K]

}
where the second and the third ⇔ are due to (refined) Strong Duality.

2.23

Corollary: When X is CQr with essentially strictly feasible CQR, the polar of X

Polar (X) = {y : yTx ≤ 1 ∀x ∈ X}
is CQr.
Indeed, Polar (X) = {y : φX(y) ≤ 1}, and a level set of CQr function is CQr with CQR
readily given by a CQR of the function.
Fact: Polar (X) always is closed, convex, and contains the origin.
Fact: When X is a closed convex set containing the origin, so is Polar (X), and the
polar of the polar is X.
Fact: The larger is a set, the smaller is its polar:

X ⊂ Y ⇒ 0 ∈ Polar (Y) ⊂ Polar (X).

2.24

S.G∗. Passing from a set to its recessive cone. Let X be a nonempty closed convex
set. Its recessive cone is defined as

Rec(X) = {d : ∃x̄ ∈ X : x̄+ td ∈ X ∀t ≥ 0}.
i.e., Rec(X) is comprised of directions d of all rays (treating a point as a ray with zero
direction) contained in X. It is easily seen that
• If X contains a ray, directed by d, then the parallel ray emanating from whatever point
of X, is contained in X:

X = X + Rec(X)

• Rec(X) is closed convex cone.
• Rec(X) = {0} iff X is bounded.
• For a polyhedral set X = {x : Ax ≤ b} it holds

Rec(X) = {x : Ax ≤ 0}.

2.25

Fact: Let a CQr set X = {x : ∃u : Px+Qu− r ∈ K} be nonempty. Then
A. The CQr set R = {x : ∃u : Px+Qu ∈ K} is a convex cone contained in the recessive
cone of clX.
B. Let the intersection of the image space of Q and K be trivial – the origin:
Qu ∈ K⇒ Qu = 0. Then X is closed and R = Rec(X).

2.26

Proof. A is evident:
x̄ ∈ X & d ∈ R⇔ ∃u, v : P x̄+Qū− r ∈ K & Pd+Qv ∈ K⇒
∀t ≥ 0 : P (x̄+ td) +Q(u+ tv)− r ∈ K⇒ {x̄+ td : t ≥ 0} ⊂ X ⇒ d ∈ Rec(clX).

To prove B, we need
Lemma. Under the premise of B there exists C <∞ such that

Qu+ z ∈ K⇒ ∃uz : Quz + z ∈ K & ‖uz‖2 ≤ C‖z‖2.
Lemma ⇒B: Let X 3 xi → x̄, i → ∞. By Lemma, the sequence u = uxi is bounded; passing to
subsequence, we can assume that ui → u, i→∞. Since Pxi +Qui − r ∈ K, we get Px+Qu− r ∈ K, that
is, x ∈ X, Thus, X is closed. Next, d ∈ Rec(X) & x̄ ∈ X & t > 1 ⇒ ∃ut : P (x + td) + Qut − r ∈ K ⇒
P [x+ td] +Qut− r ∈ K with ut = uP [x+td]−r ⇒ Pd+Qt−1ut + [Px− r]/t ∈ K, and vt = t−1ut remain bounded
as t→∞ by Lemma. Selecting tj →∞, j →∞, such that vtj → v̄ as j →∞, we have

Pd+Qv = limj→∞[Pd+Qt−1vtj + [Px− r]/tj] ∈ K,
Thus, d ∈ R, and therefore Rec(X) ⊂ R, which combines with A to imply R = Rec(X). �

Proof of Lemma. Let Z = {z : ∃u : Qu + z ∈ K}. For z ∈ Z, let uz be the ‖ · ‖2-smallest vector u

such that Qu + z ∈ K; clearly, uz exists, u0 = 0, uz ∈ [KerQ]⊥, and utz = tuz when t > 0. It suffices to
prove that ‖uz‖2 ≤ C‖z‖2 for some C < ∞. Assuming the opposite, there exists a sequence zi ∈ Z such
that ‖uzi‖2 > i‖zi‖2 ⇒uzi 6= 0. Setting ζi = zi/‖uzi‖2, ui = uζi = uzi/‖uzi, we get ui ∈ [KerQ]⊥, ‖ui‖2 = 1,
Qui + ζi ∈ K and ζi → 0, i → ∞. For properly selected i1 < i2 < ... we have uij → u, j → ∞, implying
‖u‖2 = 1, u ∈ [KerQ]⊥ and Qu ∈ K. Since 0 6= u ∈ [KerQ]⊥, we have also Qu 6= 0, which under the premise
of B is impossible. �

2.27

Note: When our sufficient condition Qu ≥K 0⇒ Qu = 0 for the validity of the implication

X = {x : ∃u : Px+Qu− r ∈ K} ⇒ X is closed & Rec(X) = R := {d : ∃v : Pd+Qv ∈ K}
is violated, the implication may fail to be true.
However: when the condition is ”severely violated:” ∃u : Qu >K 0, the implication holds
true by trivial reasons – in this case X = R is the entire space!

2.28

S.H∗. Taking conic hull. The conic hull (a.k.a. perspective transform) of a nonempty
convex set X ⊂ Rn is CQr is defined as

X+ := {[x; t] : t > 0, x/t ∈ X}
To get X+, we lift X ⊂ Rn to get the set X+ = {[x; 1] : x ∈ X} ⊂ Rn+1; X+ is the union
of all (open) rays in Rn+1 emanating from the origin and crossing X+, i.e., X+ ∪ {0} is
the smallest cone containing X+.
We can “see” X in X+: X = {x : [x; 1] ∈ X+}
Along with (never closed!) conic hull of a convex set, we are interested in the closure
of this hull, called closed conic hull.

2.29

x

t

Closed conic hulls of two closed convex sets shown in blue: segment (left) and ray
(right). Magenta sets are liftings of the blue ones; red angles are the closed conic hulls
of blue sets. To get from closed conic hulls the conic hulls per se, you should eliminate
from the red angles their parts on the x-axis. When the original set is bounded (left
picture), all you need to eliminate is the origin; when it is unbounded (right picture),
you need to eliminate much more.

2.30

The conic hull of a nonempty convex set X ⊂ Rn is defined as

X+ := {[x; t] : t > 0, x/t ∈ X}
Fact: The conic hull X+ of CQr set X is CQr:

X = {x : ∃u : Px+Qu− r ∈ K}, X+ = {[x; t] : t > 0, x/t ∈ X}︸ ︷︷ ︸
⇓

X+ = {[x; t] : ∃u, s : Px+Qu− tr ∈ K, t ≥ 0, s ≥ 0, ts ≥ 1︸ ︷︷ ︸
≡[2;t−s;t+s]∈L3

}

Indeed, {[x; t] : t > 0, x/t ∈ X} = {[x; t] : ∃u : t > 0, P [x/t] + Qu − r ∈ K} = {[x; t] : ∃u :
t > 0, Px+Qu− tr ∈ K} = {[x; t] : ∃u, s;Px+Qu− tr ∈ K, s ≥ 0, t ≥ 0, st ≥ 1}.

2.31

X+ = {[x; t] : t > 0, t−1x ∈ X} [conic hull of X]

Note: If nonempty CQr set X = {x : ∃u : Px+Qu− r ∈ K} is closed, then the CQr set

X̂+ = {[x; t] : ∃u : Px+Qu− tr ∈ K, t ≥ 0}
is ”in-between” the complete conic hull X̄+ = X+ ∪ {0} of X and the closed conic hull
clX+ = clX̄+ of X:

X̄+ := X+ ∪ {0} ⊂ X̂+ ⊂ clX+ = clX̄+.

If X is closed and bounded, then X̄+ is closed, so that in this case

X̄+ = X̂+ = clX̄∗

is CQr.

2.32

Proof. X̂+ clearly contains the origin and we already known that it contains the conic
hull X+ = {[x; t] ∈ X̄+ : t > 0} of X ⇒ X̄+ ⊂ X̂+. On the other hand, let [x; t] ∈ X̂+ and
x̄ ∈ X, so that t ≥ 0, Px + Qu − tr ∈ K, and P x̄ + Qv − r ∈ K for some u, v. Then for
every ε ∈ (0,1) we have

P [x+ εx̄]︸ ︷︷ ︸
xt

+Q[u+ εv]− [t+ ε]︸ ︷︷ ︸
=:tε>0

r ∈ K⇒ [xε; tε] ∈ X+.

Since [xε; tε]→ [x; t] as ε→ +0, we get [x; t] ∈ clX+. Thus, X̂+ ⊂ clX+.
The fact that X̄+ is closed whenever X is bounded and closed is immediate. Let
X̄+ 3 [xi; ti] → [x; t], i → ∞; we should prove that [x; t] ∈ X̄+. If infinitely many of
ti are zeros, then [x; t] is the origin (since [x; 0] ∈ X̄+ iff x = 0), and the origin does
belong to X̄+. When only finitely many of ti are zeros, then the vectors yi = xi/ti are
well defined for all large enough i and belong to X, and thus form a bounded sequence.
Passing to a subsequence, we can assume that yi → y as i → ∞, and y ∈ X since
X is closed. We see that [xi; ti] = ti[yi; 1] with yi → y ∈ X, i → ∞, implying that
[x; t] = limi→∞[xi; ti] = limi→∞ ti[yi; 1] = t[y; 1]. Since t ≥ 0 and y ∈ X, we see that
[x; t] ∈ X̄+. �

2.33

S.I∗. Taking convex hulls of finite unions. Let Xi ⊂ Rn, i = 1, ..., N , be nonempty
closed CQr sets: Xi = {x : ∃ui : Pix + Qiui − ri ∈ Ki}, and X̂ be the convex hull of their
union:

X̂ = Conv(X1 ∪ ... ∪XN).

Then the CQr set

X̃ =

{
x : ∃yi, ui, λi, i ≤ N :

λi ≥ 0,
∑

i λi = 1, x =
∑

i y
i

Piyi +Qiui − λiri ∈ Ki, i ≤ N

}
is in-between X̂ and clX̂: X̂ ⊂ X̃ ⊂ clX̂. In particular, when X̂ is closed (which definitely
is the case, e.g., when all Xi are bounded), then X̂ = X̃ is CQr.

2.34

Proof. When x ∈ X̂, we have x =
∑

i λix
i with λi ≥ 0,

∑
i λi = 1 and xi ∈ Xi, that is,

Pixi +Qivi− ri ∈ Ki for some vi. Setting yi = λixi, ui = λivi, we get Piyi +Qiui− λiri ∈ Ki

and x =
∑

i y
i, whence x ∈ X̃. Thus, X̂ ⊂ X̃. Now let x ∈ X̃ and ȳi be such that

Nȳi ∈ Xi, so that

∃(yi, ui, ūi, λi) : λi ≥ 0,
∑

i λi = 1, x =
∑

i y
i, Piyi +Qiui − λiri ∈ Ki, Piȳi +Qiūi −N−1pi ∈ Ki.

For ε ∈ (0,1] it holds

Pi[(1− ε)yi + εȳi︸ ︷︷ ︸
yiε

] +Qi[(1− ε)ui + εūi︸ ︷︷ ︸
uiε

]− [(1− ε)λi + εN−1︸ ︷︷ ︸
λi,ε>0

]ri ∈ Ki, i ≤ N,

whence ziε := yiε/λiε ∈ Xi, i ≤ N , and since
∑

i λi,ε = 1 and λi,ε ≥ 0, we get

xε :=
∑
i

yiε =
∑
i

λi,εz
i
ε ∈ X̂.

When ε→ +0, xε → x =
∑

i y
i, whence x ∈ clX̂. Thus, X̃ ⊂ clX̂. �

2.35

Operations preserving CQ-representability of functions

F.A. Restricting onto CQr set. If f(x) : Rn → R∪{+∞} is CQr function and X ⊂ Rn

is CQr set, then the restriction fX(x) =

{
f(x), x ∈ X
+∞, otherwise

is CQr:[
t ≥ f(x)⇔ ∃u : Pfx+ tp+Qfu− rf ∈ Kf

X = {x : ∃v : PXx+QXv − rX ∈ KX

]
︸ ︷︷ ︸

⇓
t ≥ fX(x)⇔ ∃u, v : Pfx+ tp+Qfu− rf ∈ Kf , PXx+QXv − rX ∈ KX

F.B. Taking finite maxima. If fi : Rn → R ∪ {+∞}, i = 1, ..., N , are CQr, then so is
their maximum f(x) = maxi fi(x).
Indeed, Epi{f} =

⋂
i

Epi{fi}, and intersection of finitely many CQr sets is CQr.

2.36

F.C. Summation with nonnegative weights. If functions fi : Rn → R ∪ {+∞},
i = 1, ..., N , are CQr and αi ≥ 0, then the function

f(x) =
n∑
i=1

αifi(x)

is CQr. Indeed, assuming w.l.o.g. that αi > 0, i ≤ N , we have

t ≥ fi(x)⇔ ∃ui : Pix+ tpi +Qiu
t − ri ∈ Ki, i ≤ N︸ ︷︷ ︸

⇓
t ≥

∑
i αifi(x)⇔ ∃ti, ui, i ≤ N : Pix+ tipi +Qiui − ri ∈ Ki ∀i, t ≥

∑
i αiti.

F.D. Direct summation. If fi : Rni → R ∪ {+∞}, i = 1, ..., N , are CQr, so is

f(x1, ..., xN) =
N∑
i=1

fi(x
i) : Rn1

x1 × ...×RnN
xN → R ∪ {+∞} :

t ≥ fi(xi)⇔ ∃ui : Pix
i + tpi +Qiu

t − ri ∈ Ki, i ≤ N︸ ︷︷ ︸
⇓

t ≥
∑

i fi(x
i)⇔ ∃ti, ui, i ≤ N : Pixi + tipi +Qiui − ri ∈ Ki ∀i, t ≥

∑
i ti.

2.37

F.E. Affine substitution of argument. If f : Rn → R∪ {+∞} is CQr and y 7→ Ay + b :
Rk → Rn is an affine mapping, then the superposition

g(y) = f(Ay + b)

is CQr:

t ≥ f(x)⇔ ∃u : Px+ tp+Qu− r ∈ K︸ ︷︷ ︸
⇓

t ≥ g(y)⇔ ∃u : P [Ay + b] + tp+Qu− r ∈ K

2.38

F.F. Taking superposition. Let F (y) : Rm → R ∪ {+∞} and fi(x) : Rn → R ∪ {+∞},
i = 1, ...,m, be CQr. Assume that F (y) is nondecreasing in every one of yi. Then the
superposition

G(x) =

{
F (f1(x), ..., fm(x)), fi(x) < +∞, i ≤ m
+∞, otherwise

is CQr: [
t ≥ F (y)⇔ ∃u : Py + tp+Qu− r ∈ K

τi ≥ fi(x)⇔ ∃ui : Pix+ τipi +Qiui − ri ∈ Ki, i ≤ N

]
︸ ︷︷ ︸

⇓
t ≥ G(x)⇔ ∃τ = [τ1; ...; τm], vi : Pτ + tp+Qu− r ∈ K︸ ︷︷ ︸

says that t ≥ F (τ)

, Pix+ τipi +Qiu
i − ri ∈ Ki, i ≤ N︸ ︷︷ ︸

say that τi ≥ fi(x)

Refinement I. Let f1, ..., fk be affine. Then the conclusion of Superposition Theorem
remains true when F is nondecreasing in arguments yk+1,...,ym, CQr of G being

t ≥ G(x)⇔ ∃u, τ = [τ1; ...; τm], vi : Pτ +Qu− r ∈ K, Pix+ τipi +Qiu
i − ri ∈ Ki, i ≤ N, τi = fi(x), i ≤ k

Illustration: The functions F (y) = y2 and f(x) = x2 − 1 are CQr; however, F (f(x)) =
(x2 − 1)2 is nonconvex and thus is not CQr. In contrast, square of affine function is
CQr.

2.39

Refinement II: Let F (y) : Rm → R ∪ {+∞} and fi(x) : Rn → R ∪ {+∞}, i = 1, ...,m, be
CQr, with f1, ..., fk affine. Assume that for some CQr set Y ⊂ Rm F is nondecreasing in
yk+1, yk+2, ..., ym on Y :

∀(y′ ∈ Y, y ∈ Y, y′ ≥ y & yi = y′i, i ≤ k) : F (y′) ≥ F (y)

and let for every x such that fi(x) < +∞, i ≤ m, it holds f(x) := [f1(x); ...; fm(x)] ∈ Y .
Then the superposition

G(x) =

{
F (f1(x), ..., fm(x)), fi(x) < +∞, i ≤ m
+∞, otherwise

is CQr: t ≥ F (y)⇔ ∃u : Py + tp+Qu− r ∈ K
fi affine , 1 ≤ i ≤ k

t ≥ fi(x)⇔ ∃ui : Pix+ tpi +Qiui − ri ∈ Ki, k < i ≤ m
Y = {y : ∃w : Ry + Sw − s ∈ KY }, f(x) ∈ Rm ⇒ f(x) ∈ Y

︸ ︷︷ ︸

⇓

t ≥ G(x)⇔ ∃u, τ = [τ1; ...; τm], vi, w :

Pτ + tp+Qu− r ∈ K [⇒F (τ) ≤ t]
τi = fi(x), 1 ≤ i ≤ k
Pix+ τipi +Qiui − ri ∈ Ki, k < i ≤ m [⇒ τi ≥ fi(x), k < i ≤ m]
Rτ + Sw − s ∈ KY [⇒ τ ∈ Y]

Illustration: The functions F (y) = y2 and f(x) = x2 are CQr, and F is nondecreasing
on the CQr set Y = R+ where f takes its values ⇒F (f(x)) = x4 is CQr.

2.40

F.G. Projective transformation. Let f(x) : Rn → R ∪ {+∞} be a convex function. It
is known that then the projective. a.k.a. perspective, transformation

F (x, α) =

{
αf(x/α), α > 0
+∞, otherwise

is convex as well. When f is CQr, so is its projective transformation:

t ≥ f(x)⇔ ∃u : Px+ tp+Qu− r ∈ K}︸ ︷︷ ︸
⇓

t ≥ F (x, α)⇔ ∃u, s :

{
Px+ tp+Qu− αr ∈ K [when α > 0, says that t/α ≥ f(x/α)]

[2;α− s;α+ s] ∈ L3 [enforces α > 0]

Note: The epigraph of perspective transformation of f is the conic hull of the epigraph
of f :

Epi

{
g(y, s) :=

{
sf(y/s) , s > 0
+∞ , s ≤ 0

}
= {(t, [y; s]) : t ≥ sf(y/s) & s > 0}

= {(t, [y; s]) : t/s ≥ f(y, s) & s > 0}
= {([t; y], s) : [t/s; y/s] ∈ Epi{f} & s > 0}.

2.41

♣ Several more advanced convexity-preserving operations ”behave well” on CQr func-
tions under mild regularity assumptions:
F.H∗. Partial minimization. Let f(x, y) : Rnx ×Rny → R∪ {+∞} be CQr, X ∈ Rnx be a
CQr set, and let parametric problem

min
y
f(x, y)

with x ∈ X be solvable whenever it is feasible. Then the function

g(x) =

{
miny f(x, y), x ∈ X
+∞, x 6∈ X

is CQr:[
t ≥ f(x, y)⇔ ∃u : Pf [x; y] + tpf +Qfu− rf ∈ Kf

X = {x : ∃v : PXx+QXv − rX ∈ KX} & miny f(x, y) is achieved whenever it is < +∞

]
︸ ︷︷ ︸

⇓
t ≥ g(x)↔ ∃y, u, v : Pf [x; y] + tpf +Qfu− rf ∈ Kf︸ ︷︷ ︸

says that t ≥ f(x, y)

, PXx+QXv − rX ∈ KX︸ ︷︷ ︸
says that x ∈ X

2.42

F.I∗. Taking Legendre transformation: If f : Rn → R ∪ {+∞} is CQr with an
essentially strictly feasible CQR

{(t, x) : t ≥ f(x)} = {(t, x) : ∃u : Px+ tp+Qu− r ∈ K}
then the Legendre transformation of f

f∗(ξ) = sup
x

[
ξTx− f(x)

]
is CQr:

{[ξ, τ] : τ ≥ f∗(ξ)} = {[ξ; τ] : τ ≥ ξTx− t∀(t, x) ∈ Epi{f}}
= {[ξ; τ] : τ ≥ sup

(t,x)∈Epi{f}
[ξTx− t]}

=

{
[ξ; τ] : τ ≥ sup

x,t,u
{ξTx− t : Px+ tp+Qu− r ∈ K}

}
=

{
[ξ; τ] : τ ≥ min

y

{
−rTy : P Ty + ξ = 0, QTy = 0, pTy = 1, y ∈ K∗ [= K]

}}
(a)

=
{

[ξ; τ] : ∃y : pTy = 1, P Ty + ξ = 0, QTy = 0, τ + rTy ≥ 0, y ∈ K∗
}

(b)

where (a), (b) are due to Strong Duality.

2.43

More examples of CQr functions/sets

7. Convex quadratic form f(x) = xTQTQx + qTx + r is CQr, since it can be ob-
tained from the squared Euclidean norm and affine function (both are CQr) by affine
substitution of argument and addition. Here is an explicit CQR for f :

Epi{f} = {(x, t) :

 2Qx
t− qTx− r − 1
t− qTx− r + 1

 ≥Lm+2 0} [Q : m× n]

2.44

8. Power functions.
Observation: Let m be nonnegative integer, and let M = 2m. The set

Xm =
{

(t, x1, x2, ..., xM) ∈ RM+1
+ : tM ≤ x1...xM

}
= {(t, x1, x2, ..., x2m) ≥ 0 : t ≤ 2m

√
x1x2...x2m}

is CQr with explicit CQR. In particular, so are the sets of nonnegative t and x’s given
by

• t ≤
√
x1x2 • t ≤ [x1x2x3x4]1/4 • t ≤ [x1x2...x1024]1/1024

Indeed,

Xm =

(t, x1, .., xM) ≥ 0 : ∃yij ≥ 0 :

y1,1 ≤

√
x1x2, y1,2 ≤

√
x3x4, ..., y1,M/2 ≤

√
xM−1xM

y2,1 ≤
√
y1,1y1,2, ..., y2,M/4 ≤

√
y1,M/2−1y1,M/2

................................
ym,1 ≤

√
ym−1,1ym−1,2

t ≤ ym,1

and the set {(u, v, w) ≥ 0 : u ≤

√
vw} is CQR - it is the intersection of the rotated

ice-cream cone {(u, v, w) : v ≥ 0, w ≥ 0, u2 ≤ vw} and the half-space {(u, v, w) : u ≥ 0},
and both these sets are CQr.

2.45

♠ Observation implies CQr’s of convex power functions.

8.1.Convex increasing power function f(x) = (x+)π, x+ = max[x,0], with rational degree
π = p

q
≥ 1 is CQr.

Indeed, let µ ∈ N be such that M ≡ 2µ ≥ p+ q. We have

Y ≡
{

(τ, x1, ..., xM) ≥ 0 : τM ≤ x1...xM
}

is CQr

⇒ with A(t, ξ) = (ξ, t, ..., t︸ ︷︷ ︸
q

, ξ, ..., ξ︸ ︷︷ ︸
M−p

,1, ...,1︸ ︷︷ ︸
p−q

) the set

{(t, ξ) : A(t, ξ) ∈ Y } =
{

(t, ξ) ≥ 0 : ξM ≤ tqξM−p1p−q
}

= {(t, ξ) ≥ 0 : t ≥ ξp/q} is CQr

[rule on taking inverse affine image]
⇒ Epi{f} = {(x, t) : t ≥ (x+)p/q} = {(x, t) : ∃ξ : (t, ξ) ≥ 0, t ≥ ξp/q, ξ ≥ x} is CQr

2.46

♠ Illustration. Why (x+)3 is CQr:
• First, the set {t ≥ y3 & y ≥ 0} is CQr:

{t ≥ y3 & y ≥ 0} = {(y, t) : y ≥ 0, t ≥ 0, y4 ≤ t · y · 1 · 1}
and the right hand side set is obtained from CQr set

{[τ ;x1;x2;x3;x4] ≥ 0 : τ4 ≤ x1x2x3x4}
by taking inverse affine image.
• Second, we have

{t ≥ (x+)3} ⇔ {[x; t] : ∃y : y ≥ x, y ≥ 0, t ≥ y3}
and the right hand side set is the inverse affine image, under the mapping (x, t, y) 7→ (x, t),
of the CQr set {(x, t, y) : y ≥ x, y ≥ 0, t ≥ y3}.
• Here is a complete CQR of f(x) = x3

+:

t ≥ (x+)3⇔∃y, u : y ≥ x, y ≥ 0, u ≥ 0, [2u; t− y; t+ y] ∈ L3︸ ︷︷ ︸
⇔{u2≤ty & t≥0} when y ≥ 0

, [2y;u− 1;u+ 1] ∈ L3︸ ︷︷ ︸
⇔y2≤u

2.47

♠ Illustration. Why x
7/3
+ is CQr:

t ≥ (x)7/3
+ ⇔ ∃(z : z ≥ 0, z ≥ x) : t ≥ z7/3

⇔ ∃(z : z ≥ 0, z ≥ x) : t ≥ 0, z16 ≤ t3z914 = t · t · t · z · z · z · z · z · z · z · z · z · 1 · 1 · 1 · 1
⇔ ∃(z, ui : z ≥ 0, z ≥ x, ui ≥ 0) :

{
u2

1 ≤ t2, u2
2 ≤ tz, u2

3 ≤ z2, u2
4 ≤ z2, u2

5 ≤ z2, u2
6 ≤ z2, u2

7 ≤ 1, u2
8 ≤ 1

z8 ≤ u1u2u3u4u5u6u7u8, t ≥ 0

⇔ ∃(z, ui, vi : z ≥ 0, z ≥ x, ui ≥ 0, vi ≥ 0) :

{
u2

1 ≤ t2, u2
2 ≤ tx, u2

3 ≤ x2, u2
4 ≤ x2, u2

5 ≤ x2, u2
6 ≤ x2, u2

7 ≤ 1, u2
8 ≤ 1

v2
1 ≤ u1u2, v2

2 ≤ u3u4, v2
3 ≤ u5u6, v2

4 ≤ u7u8

z4 ≤ v1v2v3v4, t ≥ 0

⇔ ∃
(
z, ui, vi, wi :

z ≥ 0, z ≥ x,
ui ≥ 0, vi ≥ 0,
wi ≥ 0

)
: t ≥ 0,

u2

1 ≤ t2, u2
2 ≤ tx, u2

3 ≤ x2, u2
4 ≤ x2, u2

5 ≤ x2, u2
6 ≤ x2, u2

7 ≤ 1, u2
8 ≤ 1

v2
1 ≤ u1u2, v2

2 ≤ u3u4, v2
3 ≤ u5u6, v2

4 ≤ u7u8

w2
1 ≤ v1v2, w2

2 ≤ v3v4

z2 ≤ w1w2, t ≥ 0

2.48

8.2. Convex piecewise power function f(x) =

{
xπ+, x ≥ 0
|x|π−, x ≤ 0

with rational degrees

π± ≥ 1 is CQr.
Indeed, the function is obtained from CQR function (x+)π by summation and affine
substitution of variables:

f(x) = (x+)π+ + ([−x]+)π−

8.3. Decreasing power function f(x) =

{
x−π , x > 0
+∞ , x ≤ 0

of rational degree −π < 0 is

CQr.
Indeed, when π = p/q with positive integers p, q and µ ∈ N is such that M = 2µ ≥ p + q
we have

Epi{f} = {(x, t) : t ≥ 0, x ≥ 0, xptq ≥ 1} = {(x, t) : 1 ≤ xptq1M−p−q},
which is the inverse affine image of the CQr set

{(τ, x1, ..., xm) ≥ 0 : τM ≤ x1 · ... · xM}
under the affine mapping (t, x) 7→ (1, x, ..., x︸ ︷︷ ︸

p

, t, ..., t︸ ︷︷ ︸
q

,1, ...,1︸ ︷︷ ︸
M−p−q

)

2.49

8.4. The hypograph of a concave power monomial. When πi > 0 are rational and∑
i πi ≤ 1, the convex monomial

f(x) =

{
−xπ1

1 ...x
πm
m , x ≥ 0

+∞, otherwise

is CQr.

Indeed, let πi = pi/q with positive integers pi and positive integer q, and let µ ∈ N be
such that M = 2µ ≥ q. Then

Epi{f} = {(x, t) : ∃τ : τ ≥ 0, t+ τ ≥ 0, (τ, x) ∈M},
M = {(τ, x1, ..., xm) ≥ 0 : τ q ≤ xp1

1 x
p2

2 ...x
pm
m }

= {{(τ, x1, ..., xm) ≥ 0 : τM ≤ xp1

1 x
p2

2 ...x
pm
m τM−q1

q−
∑

i
pi}

that is, Epi{f} is the intersection of a polyhedral set and the inverse image of the CQr
set

{(s, y1, ..., yM) ≥ 0 : sM ≤ y1...yM}
under the affine mapping

(τ, x1, ..., xm) 7→ (τ, x1, ..., x1︸ ︷︷ ︸
p1

, ..., xm, ..., xm︸ ︷︷ ︸
pm

, τ, ..., τ︸ ︷︷ ︸
M−q

,1, ...,1︸ ︷︷ ︸
q−
∑

i
pi

).

2.50

8.5. The epigraph of a convex power monomial. When πi > 0 are rational, the
function

f(x) =

{
x−π1

1 ...x−πmm , x > 0
+∞, otherwise

is CQr.
Indeed, when p1, ..., pm, q are positive integers such that πi = pi/q and µ ∈ N is such that
M = 2µ ≥ p1 + ...+ pm + q, we have

Epi{f} = {(t, x1, ..., xm) ≥ 0 : tqxp1

1 ...x
pm
m ≥ 1},

that is, Epi{f} is the intersection of a polyhedral set and the inverse image of the CQr
set

{(s, y1, ..., yM) ≥ 0 : sM ≤ y1...yM}
under the affine mapping

(t, x1, ..., xm) 7→ (1, t, ..., t︸ ︷︷ ︸
q

, x1, ..., x1︸ ︷︷ ︸
p1

, ..., xm, ..., xm︸ ︷︷ ︸
pm

, 1, ...,1︸ ︷︷ ︸
M−q−

∑
i
pi

).

2.51

8.6. The epigraph of the ‖·‖π-norm. When π ≥ 1 is rational (or π =∞), the function
f(x) = ‖x‖π : Rm → R is CQr. For example, the sets

{[x; t] : t ≥
[∑

i |xi|3/2
]2/3} or {[x; t] : t ≥

[∑
i |xi|5

]1/5}
are CQr.

Indeed, the case of π = ∞ is trivial – in this case Epi{f} is a polyhedral set. Now let
π = p/q with positive integer p ≥ q. It is immediately seen that

‖x‖p ≤ t⇔ t ≥ 0 & ∃v1, ..., vm ≥ 0 : |xi| ≤ t(π−1)/πv
1/π
i , i = 1, ...,m,

n∑
i=1

vi ≤ t. (∗)

As we have seen in 8.5, the set Z = {(τ, ξ, σ) : τ ≥ 0, σ ≥ 0, ξ ≤ τ
p−q
p σ

q

p} is CQr. Conse-
quently, so are the sets

Xi = {(x, v, t) ∈ R2m+1 : t ≥ 0, v ≥ 0, |xi| ≤ t(π−1)/πv
1/π
i } = {(x, v, t) ∈ R2m+1 : t ≥ 0, v ≥ 0,±xi ≤ tp−q/pvq/pi }

– each of these sets is the intersection of two inverse affine images of Z under affine
mappings. By (∗), Epi{f} is the image, under the linear mapping (x, t, v) 7→ (x, t), of the
CQr set

{(x, t, v) :
∑
i

vi ≤ t} ∩ [∩iXi] ,

so that Epi{f} is a CQr set, ⇒ f is CQr.

2.52

8.7. The hypograph of the concave function (
∑

i x
π
i)1/π : Rm

+ → R, where π ∈ (0,1] is
rational, is CQr. For example, the sets

{[x; t] : x ≥ 0, t ≤
[∑

i x
2/3
i

]3/2
} or {[x; t] : x ≥ 0, t ≤

[∑
i x

1/5
i

]5
}

are CQr.

Indeed, the case of π = 1 is trivial. When 0 < π < 1, it is immediately seen that

x ≥ 0 & t ≤ (
∑

i x
π
i)1/π ⇔ x ≥ 0 & ∃τ : 0 ≤ τ, t ≤ τ, τ ≤ (

∑
i x

π
i)1/π

⇔ x ≥ 0 & ∃τ ≥ 0, vi ≥ 0 : 0 ≤ τ, t ≤ τ, vi ≤ xπi τ1−π︸ ︷︷ ︸
CQr

,
∑

i vi ≥ τ

2.53

Fast CQr approximations of exponent and logarithm

♠ Exponent exp{x} which lives in our mind is defined on the entire real axis and rapidly
goes to 0 as x → −∞ and to +∞ as x → ∞. Exponent which lives in a computer is a
different beast: if you ask a computer what is exp{−750} or exp{750}, it will return 0
in the first, and +∞ in the second case.
⇒For all practical purposes, we can restrict the domain of the exponent — pass from
exp{x} to

ExpR(x) =

{
exp{x}, |x| ≤ R
+∞, otherwise

with once for ever fixed moderate (few hundreds) R.
Fact: For all practical purposes, ExpR(·) is CQr. Rigorously speaking: for every ε ∈
(0,0.1) we can point out a CQr function ER,ε with domain [−R,R] and with explicit
CQR (involving O(1) ln(R/ε) variables and conic quadratic constraints) such that

∀x ∈ [−R,R] : (1− ε) exp{x} ≤ ER,ε(x) ≤ exp{x}.

2.54

The idea: As you hopefully remember, by definition

exp{x} = lim
n→∞

(1 + x/n)n.

Direct computation shows that when n = 1024 and |x| ≤ 4, one has

0.992 exp{x} ≤ f1024(x) := (1 + x/1024)1024 ≤ exp{x}.
On the segment |x| ≤ 4, the function f1024(x) admits short CQR:

|x| ≤ 4, t ≥ f1024(x) ≤ t⇔ {−4 ≤ x ≤ 4 & ∃u0, ..., u9 : 1 + x/1024 ≤ u0, u
2
0 ≤ u1, u

2
1 ≤ u2, ..., u

2
8 ≤ u9, u

2
9 ≤ t}

It is clear how to proceed: a tight CQr approximation of exp{x} on a segment |x| ≤ R

is (1 + x/2k)(2k) with properly selected integer k.

2.55

ExpR(x) =

{
exp{x}, |x| ≤ R
+∞, otherwise

The construction. Given R and ε ∈ (0,0.1), let k be positive integer such that 2k > 2R.
For x ∈ [−R,R], setting y = 2−kx, we have |y| ≤ 1

2
⇒

exp{y − 4y2} ≤ 1 + y ≤ exp{y} & exp{x} = exp{2ky},
whence

exp{x} exp{−2k+2y2} ≤ [1 + y](2k) ≤ exp{x}
We have 2k+2y2 = 2k+22−2kx2 ≤ 22−kR2

⇒with properly chosen O(1) and k =cO(1) ln(R/ε)b, we have

(1− ε) exp{x} ≤
[
1 + 2−kx

](2k) ≤ exp{x} ∀x ∈ [−R,R]

⇒With the just defined k, the CQr function given by

t ≥ ER,ε(x)⇔
{
|x| ≤ R, ∃u0, ..., uk−1 : 1 + 2−kx ≤ u0, u

2
0 ≤ u1, u

2
1 ≤ u2, ..., u

2
k−2 ≤ uk−1, u

2
k−1 ≤ t

}
is the required tight CQr approximation of ExpR(·).

2.56

♣ Tight CQr approximation of “computer exponent” ExpR(·) yields tight CQr approxi-
mation of the (minus) “computer logarithm.” The construction is as follows:

• Given ε ∈ (0,0.1) and R, we have built a CQr set Q = QR,ε ⊂ R2 with “short” (of size
O(1) ln(R/ε)) explicit CQR

(x, t) ∈ Q ⇔
{
|x| ≤ R, ∃u0, ..., uk−1 : 1 + 2−kx ≤ u0, u2

0 ≤ u1, u2
1 ≤ u2, ..., u2

k−2 ≤ uk−1, u
2
k−1 ≤ t

}
and have ensured that
A. If (x, t) ∈ Q and t′ ≥ t, then (x, t′) ∈ Q;
B. If (x, t) ∈ Q, then |x| ≤ R and t ≥ (1− ε) exp{x}
C. If |x| ≤ R, then there exists t such that (x, t) ∈ Q and t ≤ (1 + ε) exp{x}
Now let

∆ = ∆R,ε = (1 + ε)[exp{−R}, exp{R}]
(with R like 700, ∆, “for all practical purposes,” is the entire positive ray), and let

Q = QR,ε = {(x, t) ∈ QR,ε : t ∈∆}

Note that Q is CQr with explicit and short CQR readily given by the CQR of Q. Let
function Ln(t) := LnR,ε(t) : R→ R ∪ {−∞} be defined by the relation

z ≤ Ln(t)⇔ ∃x : z ≤ x & (x, t) ∈ Q
From A, B, C it immediately follows that
Ln(t) is a concave function with hypograph given by explicit CQR which approximates
ln(t) on ∆ within accuracy O(ε):

t 6∈∆⇒ Ln(t) = −∞ & t ∈∆⇒ − ln(1 + ε) ≤ Ln(t)− ln(t) ≤ ln

(
1

1− ε

)
2.57

z ≤ Ln(t)⇔ ∃x : z ≤ x & (x, t) ∈ Q (∗)
Claim: t 6∈∆⇒ Ln(t) = −∞ & t ∈∆⇒ − ln(1 + ε) ≤ Ln(t)− ln(t) ≤ − ln(1− ε)

Verification is immediate. When t 6∈∆, the right hand side condition in (∗) never takes
place (since (x, t) ∈ Q implies t ∈∆) ⇒Ln(t) = −∞ outside of ∆, as claimed.
Now let t ∈ ∆. If z ≤ Ln(t), then there exists x ≥ z such that (x, t) ∈ Q ⊂ Q, whence
exp{x}(1 − ε) ≤ t by B, that is, z ≤ x ≤ ln(t) − ln(1 − ε). Since this relation holds true
for every z ≤ Ln(t), we get

Ln(t) ≤ ln(t)− ln(1− ε),
as claimed. On the other hand, let xt = ln(t)− ln(1+ε), that is, exp{xt}(1+ε) = t. Since
t ∈ ∆, we have |xt| ≤ R, which, by C, implies that there exists t′ such that (xt, t′) ∈ Q
and t′ ≤ (1 + ε) exp{xt} = t. By A it follows that (xt, t) ∈ Q, and since t ∈ ∆, we have
also (xt, t) ∈ Q. Setting z = xt, we get z ≤ xt and (xt, t) ∈ Q ⇒ z = xt ≤ Ln(t) by (∗).
Thus, Ln(t) ≥ xt = ln(t)− ln(1 + ε) �

2.58

♠ Our construction has two components:
• Computing exp{x} for large x reduces to computing exp{2−kx} and squaring the result
k times
• For small y, exp{y} ≈ 1 + y, and this simplest approximation is accurate enough for
our purposes.
Note: The second component can be improved: we can approximate exp{y} by a larger
part of its Taylor expansion, provided that the epigraph of this part is CQr. For example,

g6(y) = 1 + y +
y2

2
+
y3

6
+
y4

24
+

y5

120
+

y6

720

for small y approximates exp{y} much better than g1(y) = 1 + y and happens to be
convex function of y representable as

g6(y) = c0 + c2(α2 + y)2 + c4(α4 + y)4 + c6(α6 + y)6 [ci > 0 ∀i]
⇒ g6 is CQr with simple CQR. As a result, the CQr function E(x) with the CQR

t ≥ E(x)⇔
{
|x| ≤ R, ∃u0, ..., uk−1 : g6(2−kx) ≤ u0︸ ︷︷ ︸

CQr

, u2
0 ≤ u1, u

2
1 ≤ u2, ..., u

2
k−2 ≤ uk−1, u

2
k−1 ≤ t

}
ensures the target relation

|x| ≤ R⇒ (1− ε) exp{x} ≤ E(x) ≤ (1 + ε) exp{x}
with smaller k than in our initial construction. For example, with g6 in the role of g1,
R = 700, k = 15 we ensure ε =3.0e-11.

2.59

Note: Our result is “honest” – this is what happens on a real computer. In our
previous considerations there was a slight cheating: by reasons similar to those which
make “computer exponent” of 750 equal +∞, with standard floating point arithmetic,
operating with numbers like 1+y for “very small” y leads to significant loss of accuracy.
As a result, with our initial construction and R = 700 the best achievable ε is as “large”
as 1.13e-5 (corresponds to k = 35).
♠ Here is the CQR of a function E(x) approximating exp{x}, −700 ≤ x ≤ 700, within relative error
≤ 3.e-11:

t ≥ E(x)
m

∃u0, u1, u2, u3, v, τ1, τ2, τ3, s, w1, ..., w14 :
−700 ≤ x ≤ 700

−u0 ≤
x

32768
+ 1 ≤ u0, 0 ≤ u1 ≤

√
τ1u0, 0 ≤ u2 ≤

√
u0, 0 ≤ u3 ≤

√
u1u2, u0 ≤

√
u3︸ ︷︷ ︸

⇔τ1≥(x/215+1)6(
x

32768
+ 5

3

)2
≤ v, v2 ≤ τ2︸ ︷︷ ︸

⇔(x/215+5/3)4≤τ2

,
(

x
32768

+ 1963
855

)2
≤ τ3, s ≥ 78871

5540400
+ 19τ3

144
+ τ2

48
+ τ1

720︸ ︷︷ ︸
says that |x| ≤ 700 & s ≥

∑6

`=0
[x/215]`

`!

w1 ≥ s2, w2 ≥ w2
1, ..., w14 ≥ w2

13, t ≥ w2
14

2.60

Robust Linear Programming: motivation

♣ Consider an LP program

min
x

{
cTx : Ax+ b ≥ 0

}
(LP)

In applications, the data (c, A, b) of the program not always are known exactly, reasons
being at least:
• measurement errors in data entries like characteristics of devices, durations and out-
comes of technological processes, etc. Not only data of this type are obtained by
imprecise measurements — in reality the very values of these data, rather than being
fixed reals, slightly fluctuate in time
• prediction errors in data entries related to remote, not directly accessible, locations in
time and space (future demands, temperatures, etc.)
• implementation errors. Some of the design variables xj may represent characteristics
of physical processes and/or devices and as such cannot be implemented exactly as
computed: the implemented value xj of a variable and its computed value x∗j usually
are linked by xj = (1 + εj)x∗j with unknown εj from a known small range. The effect of
implementation errors on a linear constraint

∑
j ajxj ≤ b is exactly as if there were no

implementation errors, but the data aj were subject to perturbation aj 7→ aj(1 + εj).

2.61

♠ In LP practice small data uncertainties (like 0.1% or less) are usually ignored, and the
problem is processed as if the data were exact.

(!) It turns out that ignoring small data uncertainties can make the resulting
nominal optimal solution meaningless.

2.62

Example 1: Synthesis of Antenna array

♣ The diagram of an antenna. Consider a (monochromatic) antenna placed at the
origin. The electric field generated by the antenna at a remote point rδ (δ is a unit
direction) is

E = a(δ)r−1 cos (φ(δ) + tω − 2πr/λ) + o(r−1)

• t: time • ω: frequency • λ: wavelength

• It is convenient to aggregate a(δ) and φ(δ) into a single complex-valued function –
the diagram of the antenna

D(δ) = a(δ)(cos(φ(δ)) + i sin(φ(δ))).

• The directional density of the energy sent by the antenna is proportional to |D(·)|2

• The diagram D(·) of a complex antenna comprised of several antenna elements is
the sum of the diagrams Di(·) of the elements:

D(δ) = D1(δ) + ...+DN(δ)

2.63

♣ Synthesis of Array of Antennae: Given a target diagram D∗(·) along with N
“building blocks” – antenna elements with diagrams D1(·), ..., DN(·) – find “weights”
zj ∈ C such that the function ∑N

j=1
zjDj(·)

is as close as possible to the target diagram D∗(·).
• Physically, multiplication of a diagram Dj(·) by a complex weight zj means that the
corresponding standard “building block” is preceded by appropriate amplification and
delay devices.
• Choosing a fine grid ∆ of directions δ, we may pose the Antenna Synthesis problem
as a discrete approximation problem with complex-valued data and design variables:

min
τ,z

{
τ :

∣∣∣∣D∗(δ)−∑N

j=1
zjDj(δ)

∣∣∣∣ ≤ τ ∀δ ∈∆

}
,

which is a CQP.
• Sometimes the diagrams of the elements and the target diagram are real-valued. In
this case, we lose nothing when restricting zj to be real, and thus end up with an LP
program.

2.64

Antenna synthesis: Example

♣ Let a planar antenna be comprised of a central circle and 9 concentric rings of the
same area placed in the XY -plane (“Earth’s surface”):

The radius of the antenna is 1m

2.65

• The diagram of a ring {a ≤ r ≤ b} in the XY -plane is real-valued and depends on
direction’s altitude angle θ only:

Da,b(θ) =
1

2

b∫
a

 2π∫
0

ρ cos(2πρλ−1 cos(θ) cos(φ))dφ

 dρ.

θ

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Diagrams of 10 rings as functions
of altitude angle θ ∈ [0, π/2], λ =0.5m

2.66

• Assume the target diagram to be real-valued function of the altitude angle “concen-
trated” in the segment π

2
− π

12
≤ θ ≤ π

2
:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

The target diagram

• With 120-point discretization of altitudes, the Antenna Synthesis problem becomes
an LP program with 11 variables and 240 linear constraints:

min
x,τ

τ : −τ ≤ D∗(θ`)−
10∑
j=1

xjDj(θ`) ≤ τ, θ` =
π

2`
, 1 ≤ ` ≤ 120

2.67

• The resulting diagram approximates the target within absolute inaccuracy 0.0621:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

The target diagram (dashed) and
the synthesied diagram (solid)

• The optimal weights (rounded to 5 digits) are
element # 1 2 3 4 5 6 7 8 9 10

weight 1624.4 -14700 55383 -107247 95468 19221 -138620 144870 -69303 13311

2.68

♣ The optimal weights x∗j, j = 1, ...,10, are characteristics of physical devices. In reality,
they somehow drift around their computed values.
What happens when the weights are affected by small (just 0.1%) random perturbations:

xj = (1 + εj)x∗j[
{εj ∼ Uniform[−0.001,0.001]}10

j=1

] ?

♣ The results of 0.1% “implementation errors” are disastrous:

“Dream and reality”

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−8

−6

−4

−2

0

2

4

6

8

“Nominal” diagram Actual diagram
[dashed: the target diagram]

• The target diagram is of the uniform norm 1, and its uniform distance from the
nominal diagram is ≈ 0.06.

• The realization of “actual diagram” shown on the picture is at the uniform distance
7.8 from the target diagram!

2.69

Example 2: NETLIB Case Study: Diagnosis

♣ NETLIB is a collection of about 100 not very large LPs, mostly of real-world origin. To
motivate the methodology of our “case study”, here is constraint # 372 of the NETLIB
problem PILOT4:

aTx ≡ −15.79081x826 − 8.598819x827 − 1.88789x828 − 1.362417x829 − 1.526049x830
−0.031883x849 − 28.725555x850 − 10.792065x851 − 0.19004x852 − 2.757176x853
−12.290832x854 + 717.562256x855 − 0.057865x856 − 3.785417x857 − 78.30661x858
−122.163055x859 − 6.46609x860 − 0.48371x861 − 0.615264x862 − 1.353783x863
−84.644257x864 − 122.459045x865 − 43.15593x866 − 1.712592x870 − 0.401597x871
+x880 − 0.946049x898 − 0.946049x916

≥ b ≡ 23.387405

(C)

The related nonzero coordinates in the optimal solution x∗ of the problem, as reported
by CPLEX, are:

x∗826 = 255.6112787181108 x∗827 = 6240.488912232100 x∗828 = 3624.613324098961
x∗829 = 18.20205065283259 x∗849 = 174397.0389573037 x∗870 = 14250.00176680900
x∗871 = 25910.00731692178 x∗880 = 104958.3199274139

This solution makes (C) an equality within machine precision.
♣ Most of the coefficients in (C) are “ugly reals” like -15.79081 or -84.644257. We
definitely may believe that these coefficients characterize technological devices/proces-
ses, and as such hardly are known to high accuracy. Thus, “ugly coefficients” may
be assumed to be uncertain and to coincide with the “true” data within accuracy of
3-4 digits. The only exception is the coefficient 1 of x880, which perhaps reflects the
structure of the problem and is exact.

2.70

aTx ≡ −15.79081x826 − 8.598819x827 − 1.88789x828 − 1.362417x829 − 1.526049x830
−0.031883x849 − 28.725555x850 − 10.792065x851 − 0.19004x852 − 2.757176x853
−12.290832x854 + 717.562256x855 − 0.057865x856 − 3.785417x857 − 78.30661x858
−122.163055x859 − 6.46609x860 − 0.48371x861 − 0.615264x862 − 1.353783x863
−84.644257x864 − 122.459045x865 − 43.15593x866 − 1.712592x870 − 0.401597x871
+x880 − 0.946049x898 − 0.946049x916

≥ b ≡ 23.387405

(C)

x∗826 = 255.6112787181108 x∗827 = 6240.488912232100 x∗828 = 3624.613324098961
x∗829 = 18.20205065283259 x∗849 = 174397.0389573037 x∗870 = 14250.00176680900
x∗871 = 25910.00731692178 x∗880 = 104958.3199274139

♣ Assume that the uncertain entries of a are 0.1%-accurate approximations of unknown
entries in the “true” data ã, how would this uncertainty affect the validity of the con-
straint evaluated at the nominal solution x∗?
• The worst case, over all 0.1%-perturbations of uncertain data, violation of the con-
straint is as large as 450% of the right hand side!
• In the case of random and independent 0.1% perturbations of the uncertain coeffi-
cients, the statistics of the “relative constraint violation”

V =
max[b− ãTx∗,0]

b
× 100%

also is disastrous:
Prob{V > 0} Prob{V > 150%} Mean(V)

0.50 0.18 125%
Relative violation of constraint # 372 in PILOT4

(1,000-element sample of 0.1% perturbations of the uncertain data)

2.71

♣ We see that quite small (just 0.1%) perturbations of “obviously uncertain” data
coefficients can make the “nominal” optimal solution x∗ heavily infeasible and thus –
practically meaningless.

2.72

♣ In our Case Study, we choose a “perturbation level” ε (taking values 1%, 0.1%,
0.01%), and, for every one of the NETLIB problems, measure the “reliability index” of
the nominal solution at this perturbation level, specifically, as follows.
• We compute the optimal solution x∗ of the program by CPLEX.
• For every one of the inequality constraints

aTx ≤ b (∗)
— we split the right hand side coefficients aj into “certain” (rational fractions p/q with
|q| ≤ 100) and “uncertain” (all the rest). Let J be the set of all uncertain coefficients
of (∗).
— we define the reliability index of (∗) as

aTx∗+ε
√∑

j∈J
a2
j (x

∗
j)

2−b
max[1,|b|] × 100%

Note that the reliability index is of order of typical violation (measured in percents of
the right hand side) of the constraint, as evaluated at x∗, under independent random
perturbations, of relative magnitude ε, of the uncertain coefficients.
• We treat the nominal solution as unreliable, and the problem - as bad, the level of
perturbations being ε, if the worst, over the inequality constraints, reliability index is
worse than 5%.

2.73

♣ The results of the Diagnosis phase of our Case Study are as follows.

From the total of 90 NETLIB problems we have processed,
• in 27 problems the nominal solution turned out to be unreliable at the largest (ε = 1%)
level of uncertainty;
• 19 of these 27 problems are already bad at the 0.01%-level of uncertainty, and in 13
of these 19 problems, 0.01% perturbations of the uncertain data can make the nominal
solution more than 50%-infeasible for some of the constraints.

2.74

Problem Sizea) ε = 0.01% ε = 0.1% ε = 1%
#badb) Indexc) #bad Index #bad Index

80BAU3B 2263× 9799 37 84 177 842 364 8,420
25FV47 822× 1571 14 16 28 162 35 1,620
ADLITTLE 57× 97 2 6 7 58
AFIRO 28× 32 1 5 2 50
BNL2 2325× 3489 24 34
BRANDY 221× 249 1 5
CAPRI 272× 353 10 39 14 390
CYCLE 1904× 2857 2 110 5 1,100 6 11,000
D2Q06C 2172× 5167 107 1,150 134 11,500 168 115,000
E226 224× 282 2 15
FFFFF800 525× 854 6 8
FINNIS 498× 614 12 10 63 104 97 1,040
GREENBEA 2393× 5405 13 116 30 1,160 37 11,600
KB2 44× 41 5 27 6 268 10 2,680
MAROS 847× 1443 3 6 38 57 73 566
NESM 751× 2923 37 20
PEROLD 626× 1376 6 34 26 339 58 3,390
PILOT 1442× 3652 16 50 185 498 379 4,980
PILOT4 411× 1000 42 210,000 63 2,100,000 75 21,000,000
PILOT87 2031× 4883 86 130 433 1,300 990 13,000
PILOTJA 941× 1988 4 46 20 463 59 4,630
PILOTNOV 976× 2172 4 69 13 694 47 6,940
PILOTWE 723× 2789 61 12,200 69 122,000 69 1,220,000
SCFXM1 331× 457 1 95 3 946 11 9,460
SCFXM2 661× 914 2 95 6 946 21 9,460
SCFXM3 991× 1371 3 95 9 946 32 9,460
SHARE1B 118× 225 1 257 1 2,570 1 25,700

a) # of linear constraints (excluding the box ones) plus 1 and # of variables
b) # of constraints with index > 5%
c) The worst, over the constraints, reliability index, in %

2.75

♣ Conclusions:

♦ In real-world applications of Linear Programming one cannot ignore the
possibility that a small uncertainty in the data (intrinsic for the majority of
real-world LP programs) can make the usual optimal solution of the problem
completely meaningless from a practical viewpoint.

Consequently,

♦ In applications of LP, there exists a real need of a technique capable of
detecting cases when data uncertainty can heavily affect the quality of the
nominal solution, and in these cases to generate a “reliable” solution, one
which is immune against uncertainty.

2.76

Robust Linear Programming: the paradigm

♣ Consider an LP program

min
x

{
cTx : Ax+ b ≥ 0

}
(LP)

Assume that the data (c, A, b) of the program are not known exactly; all we know is an
uncertainty set U the “true data” belong to.
♣ A natural way to process an LP program with uncertain data is to build the robust
counterpart of the program, where we impose on candidate solutions the requirement
to be robust feasible – to satisfy all realizations of the inequality constraints. Among
these robust feasible solutions, we are seeking for the “best” – with the smallest possible
guaranteed value of the objective. Thus, the robust counterpart of (LP) is the problem

min
x

{
f(x) = max

c∈Uobj
cTx : Ax+ b ≥ 0 ∀(A, b) ∈ Ucons

}
(RC)

where
Uobj = {c : ∃(A, b) : (c, A, b) ∈ U},
Ucons = {(A, b) : ∃c : (c, A, b) ∈ U}

are the projections of the uncertainty set on the spaces of the data of the objective and
the constraints, respectively.

2.77

min
x

{
cTx : Ax+ b ≥ 0

}
,

(c, A, b) ∈ U
(ULP)

⇓

min
x

{
f(x) = max

c∈Uobj
cTx : Ax+ b ≥ 0 ∀(A, b) ∈ Ucons

}
m

min
t,x

{
t :

cTx ≤ t,
Ax+ b ≥ 0

∀(c, A, b) ∈ U .
}

(RC)

♣ Robust counterpart is a semi-infinite convex optimization program – one with infinitely
many linear inequality constraints. Possibilities to process such a problem depend on
the geometry of the uncertainty set U.
♣ If the uncertainty set U is an ellipsoid (or an intersection of ellipsoids), or, more
generally, is CQr, (RC) can be converted to a conic quadratic program.

2.78

Theorem. Consider an uncertain LP{
min
x

{
cTx : Ax ≥ b

}
: (c, A, b) ∈ U

}
(ULP)

and assume that the uncertainty set U is CQr with an essentially strictly feasible CQR.
Then the set of robust feasible solutions to (ULP) is CQr with explicitly given CQR,
so that the Robust Counterpart of (ULP) is (equivalent to) an explicit conic quadratic
problem.
If U is polyhedrally representable, then the RC of (ULP) is (equivalent to) an explicit
LP problem.
Theorem is an immediate consequence of the following
Observation: Let Z ⊂ Rn+1 be a nonempty CQr set given by essentially strictly feasible
CQR. Then the set

X = {x : zT [x; 1] ≤ 0 ∀z ∈ Z}
is CQr with explicitly given CQR.

2.79

Observation: Let Z ⊂ Rn+1 be a nonempty CQr set given by essentially strictly feasible
CQR. Then the set

X = {x : zT [x; 1] ≤ 0 ∀z ∈ Z}
is CQr with explicitly given CQR.
• Observation ⇒Theorem: The data a, b of a single uncertain constraint

0 ≥ aTx+ b ≡ [a; b]T [x; 1] (∗)
is linear image of the full data: z := [a; b] = Pζ, ζ := (c, A, b).
⇒The RC of (∗) reads

zT [x; 1] ≤ 0 ∀z ∈ Z = PU := {z : ∃u ∈ U : z = Pu} (!)

The set Z admits essentially strictly feasible CQR (inherited from essentially strictly
feasible CQR of U), implying by Observation that the feasible set of (!), or, which is
the same, of (∗), is CQr with CQR readily given by CQR of U.

⇒The feasible set of the RC of every uncertain constraint in our uncertain LP is CQr
with explicit CQR, so that the feasible set of problem’s RC admits explicit CQR.

2.80

Observation: Let Z ⊂ Rn+1 be a nonempty CQr set given by essentially strictly feasible
CQR:

Z =

{
z ∈ Rn : ∃u :

{
Pz +Qu− r ∈ K
Rx+ Su− s ≥ 0

}
∃(z̄, ū) : P z̄ +Qū− r ∈ intK, Rz̄ + Sū ≥ s

(K: direct product of Lorentz cones). Then the set

X = {x : zT [x; 1] ≤ 0 ∀z ∈ Z}
is CQr with explicitly given CQR.

• claim is readily given by the Calculus rule on CQ representability of the support function
of a CQr set. Here is direct demonstration:

x ∈ X ⇔ sup
z∈Z

[x; 1]Tz ≤ 0⇔ 0 ≥ sup
z,u

{
[x; 1]Tz : Pz +Qu− r ∈ K, Rz + Su ≥ s

}
⇔︸︷︷︸
(a)

0 ≥ min
y,v

{
−rTy − sTv : y ∈ K∗ [= K], v ≥ 0, P Ty +RTv + [x; 1] = 0, QTy + STv = 0

}
⇔︸︷︷︸
(b)

∃y, v : y ∈ K∗ [= K], v ≥ 0, P Ty +RTv + [x; 1] = 0, QTy + STv = 0, rTy + sTv ≥ 0

with (a), (b) given by Strong Duality.

2.81

♠ In simple cases we can write the RC of an uncertain LP straightforwardly, without
using CQR machinery.
Example: The Robust Counterpart of uncertain LP with interval uncertainty:

Uobj = {c : |cj − c0
j | ≤ δcj, j = 1, ..., n}

Ui = {(ai1, , , .aim, bi) : |aij − a0
ij| ≤ δaij, |bi − b0

i | ≤ δbi}
is the LP program

min
x,y,t

t :

∑
j

c0
jxj +

∑
j

δcjyj ≤ t∑
j

a0
ijxj +

∑
j

δaijyj ≤ b0
i − δbi

−yj ≤ xj ≤ yj

2.82

How it works? – Antenna Example

minx,τ
{
τ : −τ ≤ D∗(θ`)−

∑10
j=1 xjDj(θ`) ≤ τ, ` = 1, ..., L

}
⇔ minx,τ {τ : Ax+ τa+ b ≥ 0} (LP)

• The influence of “implementation errors”

xj 7→ (1 + εj)xj, |εj| ≤ ρ,
is as if there were no implementation errors, but the part A of the constraint matrix were
uncertain and known “up to multiplication by a diagonal matrix with diagonal entries
from [1− ρ,1 + ρ]”:

Uini =
{
A = AnomDiag{1 + ε1, ...,1 + ε10} : |εj| ≤ ρ

}
(U)

Note that as far as a particular constraint is concerned, the uncertainty is an interval
one with δAij = ρ|Aij|. The remaining coefficients (and the objective) are certain.
♣ To improve reliability of our design, we could replace the uncertain LP program (LP),
(U) with its robust counterpart, which is nothing but an explicit LP program.

2.83

♠ However, to work with interval uncertainty set Uini would be “too conservative” – the
implementation errors are random and independent ⇒ the probability for all of them to
take simultaneously the “most unfavourable” values is negligibly small.
Let us try to define the uncertainty set in a smarter way.

♣ Consider a linear constraint ∑n

j=1
ajxj + b ≥ 0 (L)

and let aj be randomly perturbed: aj 7→ (1 + εj)aj εj being independent symmetrically
distributed and bounded random variables:

εj ∼ −εj and |εj| ≤ σj.
What is a “reliable version” of (L)?
Note: When assuming aj fixed and xj randomly perturbed: xj 7→ (1 + εj)xj, we are in
exactly the same situation as when aj are randomly perturbed and xj are fixed!

2.84

∑n

j=1
ajxj + b ≥ 0 (L)

• With randomly perturbed aj, the left hand side in (L) becomes a random variable:

ζ =
n∑

j=1
aj(1 + εj)xj + b Mean{ζ} ≡ E{ζ} =

n∑
j=1

ajxj + b,

StD{ζ} ≡
(
E
{

(ζ −Mean{ζ})2
})1/2 ≤

√∑n
j=1 σ

2
j a

2
jx

2
j .

• Let us choose a “safety parameter” κ and ignore all events where

ζ < Mean{ζ} − κStD{ζ},
taking full responsibility for all remaining events.

With this “common sense” approach, a “reliable” version of (L) becomes the conic
quadratic inequality

n∑
j=1

ajxj + b− κ

√√√√ n∑
j=1

σ2
j a

2
jx

2
j ≥ 0 (Lrel)

2.85

n∑
j=1

aj(1 + εj)xj + b ≥ 0 (L)

E{εj} = 0; |εj| ≤ σj
⇓

n∑
j=1

ajxj + b− κ
√∑n

j=1 σ
2
j a

2
jx

2
j ≥ 0 (Lrel)

• Note: (Lrel) is exactly the robust counterpart of (L) associated with the ellipsoidal
uncertainty set

Uκ =
{
a′ = a+ κDiag(σ1a1, ..., σnan)u : uTu ≤ 1

}
= {a′ :

∑n
j=1

(a′j−aj)2

σ2
j a

2
j

≤ κ2} (Ell)

Thus, ignoring “rare events” is equivalent to replacing the actual box

Utrue =
{
a′ :

(a′j−aj)2

σ2
j a

2
j

≤ 1, j = 1, ..., n
}

of values of the perturbed coefficient vector

a′ = ((1 + ε1)a1, ..., (1 + εn)an)T

with ellipsoid (Ell).

2.86

• It is easily seen that

Prob

ζ < Mean{ζ} − κ

√√√√ n∑
j=1

σ2
j a

2
jx

2
j

 ≤ exp

{
−
κ2

2

}
The probability of the “rare event” we are ignoring when replacing Utrue with U5.26 is
< 10−6. Note that for n large and all σj are of the same order of magnitude, the ellipsoid
U5.26 is a “negligible part” of the box Utrue!

2.87

Proof of the Probability Bound

Theorem [Hoeffding’s Inequality] Let ci, σi be deterministic reals, and ξi be independent
random variables with zero mean such that |ξi| ≤ σi. Then for every κ > 0 one has

p(κ) = Prob
{∑

i

ciξi > κ

√∑
i
c2
i σ

2
i︸ ︷︷ ︸

σ

}
≤ exp

{
−κ2/2

}
.

Proof. For γ > 0 we have

exp{γκσ}p(κ) ≤ E
{

exp{γ
∑

i
ciξi}

}
=
∏

i
E {exp{γciξi}}

=
∏

i
E
{

exp{γciξi} − sinh(γciσi)σ
−1
i ξi
}

[since E{ξi} = 0]

≤
∏

i
max−σi≤si≤σi

[
exp{γcisi} − sinh(γciσi)σ

−1
i si
]︸ ︷︷ ︸

gi(si), gi(·): convex
gi(±σi) = cosh(γciσi)

=
∏

i
cosh(γciσi) =

∏
i

[∑∞
k=0

[γ2c2
i
σ2
i
]k

(2k)!

]
≤
∏

i

[∑∞
k=0

[γ2c2
i
σ2
i
]k

2kk!

]
=

∏
i
exp{γ

2c2
i
σ2
i

2
} = exp{γ2σ2}.

Thus,

p(κ) ≤ min
γ>0

exp{
γ2σ2

2
− γκσ} = exp

{
−κ2/2

}
.

2.88

♣ Applying the outlined methodology to our Antenna example:

min
x,τ

{
τ : −τ ≤ D∗(θ`)−

∑10

j=1
xjDj(θ`) ≤ τ, 1 ≤ ` ≤ 120

}
(LP)

⇓

minx,τ τ

D∗(θ`)−
∑10

j=1 xjDj(θ`) + κσ
√∑10

j=1 x
2
jD

2
j (θ`) ≤ τ

D∗(θ`)−
∑10

j=1 xjDj(θ`)− κσ
√∑10

j=1 x
2
jD

2
j (θ`) ≥ −τ

1 ≤ ` ≤ 120

(RC)

[σ = 0.001]
we get a robust design.

2.89

• The results of “Robust Antenna Design” (κ = 1) are as follows:

Dream and reality

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

A typical “robust” diagram

• The diagram shown on the picture is at uniform distance 0.0822 from the target (just by 30% larger

than the “nominal optimal value” is 0.0622 given by “nominal design” which ignores the implementation

errors)

• As a compensation, robust design is incomparably more stable than the nominal one: in a sample of

40 realizations of “robust diagrams”, the uniform distance to the target varies from 0.0814 to 0.0830.

• When implementation errors become 10 times larger (1% instead of 0.1%), the “robust design” remains

nearly as good as in the case of 0.1%-perturbations: now in a sample of 40 realizations of “robust

diagrams”, the uniform distance to the target varies from 0.0834 to 0.116.

2.90

♣ Why the “nominal design” is that sensitive to implementation errors?
The basic diagrams Dj(·) are “nearly linearly dependent”. As a result, the nominal
problem is “ill-posed” – it possesses a huge domain comprised of “nearly optimal”
solutions. Indeed, look what are the optimal values in the nominal Antenna Design LP
with added box constraints |xj| ≤ L on the variables:

L 1 10 102 103 104 105 106 107

Opt Val 0.09449 0.07994 0.07358 0.06955 0.06588 0.06272 0.06215 0.06215

The “exactly optimal” solution to the nominal problem is very large, and therefore even
small relative implementation errors may completely destroy the corresponding design.
In the robust counterpart, magnitudes of candidate solutions are penalized, so that
RC implements a smart trade-off between the optimality and the magnitude (i.e., the
stability) of the solution.

j 1 2 3 4 5 6 7 8 9 10
xnom
j 1.6e3 -1.4e4 5.5e4 -1.1e5 9.5e4 1.9e4 -1.3e5 1.4e6 -6.9e4 1.3e4
xrob
j -0.30 5.0 -3.4 -5.1 6.9 5.5 5.3 -7.5 -8.9 13

2.91

How it works? NETLIB Case Study

♣ We solved the Robust Counterparts of the bad NETLIB problems, assuming interval
uncertainty in “ugly coefficients” of inequality constraints and no uncertainty in equa-
tions. It turns out that

• Reliable solutions do exist, except for 4 cases corresponding to the highest (ε = 1%)
perturbation level.

• The “price of immunization” in terms of the objective value is surprisingly low: when
ε ≤ 0.1%, it never exceeds 1% and it is less than 0.1% in 13 of 23 cases. Thus, passing
to the robust solutions, we gain a lot in the ability of the solution to withstand data
uncertainty, while losing nearly nothing in optimality.

2.92

Objective at robust solution

Problem
Nominal
optimal

value
ε = 0.01% ε = 0.1% ε = 1%

80BAU3B 987224.2 987311.8 (+ 0.01%) 989084.7 (+ 0.19%) 1009229 (+ 2.23%)
25FV47 5501.846 5501.862 (+ 0.00%) 5502.191 (+ 0.01%) 5505.653 (+ 0.07%)
ADLITTLE 225495.0 225594.2 (+ 0.04%) 228061.3 (+ 1.14%)
AFIRO -464.7531 -464.7500 (+ 0.00%) -464.2613 (+ 0.11%)
BNL2 1811.237 1811.237 (+ 0.00%) 1811.338 (+ 0.01%)
BRANDY 1518.511 1518.581 (+ 0.00%)
CAPRI 1912.621 1912.738 (+ 0.01%) 1913.958 (+ 0.07%)
CYCLE 1913.958 1913.958 (+ 0.00%) 1913.958 (+ 0.00%) 1913.958 (+ 0.00%)
D2Q06C 122784.2 122793.1 (+ 0.01%) 122893.8 (+ 0.09%) Infeasible
E226 -18.75193 -18.75173 (+ 0.00%)
FFFFF800 555679.6 555715.2 (+ 0.01%)
FINNIS 172791.1 172808.8 (+ 0.01%) 173269.4 (+ 0.28%) 178448.7 (+ 3.27%)
GREENBEA -72555250 -72526140 (+ 0.04%) -72192920 (+ 0.50%) -68869430 (+ 5.08%)
KB2 -1749.900 -1749.877 (+ 0.00%) -1749.638 (+ 0.01%) -1746.613 (+ 0.19%)
MAROS -58063.74 -58063.45 (+ 0.00%) -58011.14 (+ 0.09%) -57312.23 (+ 1.29%)
NESM 14076040 14172030 (+ 0.68%)
PEROLD -9380.755 -9380.755 (+ 0.00%) -9362.653 (+ 0.19%) Infeasible
PILOT -557.4875 -557.4538 (+ 0.01%) -555.3021 (+ 0.39%) Infeasible
PILOT4 -64195.51 -64149.13 (+ 0.07%) -63584.16 (+ 0.95%) -58113.67 (+ 9.47%)
PILOT87 301.7109 301.7188 (+ 0.00%) 302.2191 (+ 0.17%) Infeasible
PILOTJA -6113.136 -6113.059 (+ 0.00%) -6104.153 (+ 0.15%) -5943.937 (+ 2.77%)
PILOTNOV -4497.276 -4496.421 (+ 0.02%) -4488.072 (+ 0.20%) -4405.665 (+ 2.04%)
PILOTWE -2720108 -2719502 (+ 0.02%) -2713356 (+ 0.25%) -2651786 (+ 2.51%)
SCFXM1 18416.76 18417.09 (+ 0.00%) 18420.66 (+ 0.02%) 18470.51 (+ 0.29%)
SCFXM2 36660.26 36660.82 (+ 0.00%) 36666.86 (+ 0.02%) 36764.43 (+ 0.28%)
SCFXM3 54901.25 54902.03 (+ 0.00%) 54910.49 (+ 0.02%) 55055.51 (+ 0.28%)
SHARE1B -76589.32 -76589.32 (+ 0.00%) -76589.32 (+ 0.00%) -76589.29 (+ 0.00%)

Objective values for nominal and robust solutions to bad NETLIB problems.

2.93

More on Robust LP: Affinely Adjustable Robust Counterpart

♣ The rationale behind the Robust Optimization paradigm as applied to LP is based on
two assumptions:
1. Constraints are a “must”: a meaningful solution should satisfy all realizations of the
constraints allowed by the uncertainty set.
2. All decision variables should be specified (get numeric values) before the true data
becomes known and thus should be independent of the true data.

♣ In many cases, Assumption 2 is too conservative:
A. In dynamical decision-making, only part of decision variables correspond to “here and
now” decisions, while the remaining variables represent “wait and see” decisions which
are to be made when certain part of the true data is already revealed. A “wait and see”
decision can – and should! – depend on the corresponding part of the true data.
B. Some of the decision variables do not correspond to actual decisions at all; they
are artificial “analysis variables” introduced to convert the problem into the LP form.
These variables can – and should! – depend on the entire true data.

2.94

Example: Consider the problem of finding the best ‖ · ‖1-approximation

min
x,t

{
t :
∑

i
|bi −

∑
j
aijxj| ≤ t

}
. (P)

When the data are certain, this problem is equivalent to the LP program

min
x,y,t

t :
∑
i

yi ≤ t, −yi ≤ bi −
∑
j

aijxj ≤ yi ∀i

 . (LP)

With uncertain data, the Robust Counterpart of (P) becomes the semi-infinite problem

min
x,t

t :
∑
i

|bi −
∑
j

aijxj| ≤ t∀(bi, aij) ∈ U

 ,

or, which is the same, the problem

min
x,t

t : ∀(bi, aij) ∈ U ∃y :
∑
i

yi ≤ t, −yi ≤ bi −
∑
j

aijxj ≤ yi

 , (RCP)

while the RC of (LP) is the much more conservative problem

min
x,t

t : ∃y : ∀(bi, aij) ∈ U :
∑
i

yi ≤ t, −yi ≤ bi −
∑
j

aijxj ≤ yi

 . (RCLP)

2.95

Adjustable Robust Counterpart of an Uncertain LP

♣ Consider an uncertain LP. W.l.o.g., we may assume that the data of this LP are affinely
parameterized by a “perturbation vector” ζ running through a given perturbation set Z:

LP =
{

minx
{
cT [ζ]x : A[ζ]x− b[ζ] ≥ 0

}
: ζ ∈ Z

}
[cj[ζ], Aij[ζ], bi[ζ] are affine in ζ]

♣ Assume that every decision variable may depend on a given “portion” of the true
data. Since the latter is affine in ζ, this assumption says that xj may depend on Pjζ,
where Pj are given matrices.

• Pj = 0⇒ xj is non-adjustable: this is an independent of the true data “here
and now” decision;

• Pj 6= 0 ⇒ xj is adjustable: this is a “wait and see’ decision or an analysis
variable which may adjust itself – fully or partially, depending on Pj – to the
true data.

2.96

LP =
{

minx
{
cT [ζ]x : A[ζ]x− b[ζ] ≥ 0

}
: ζ ∈ Z

}
[cj[ζ], Aij[ζ], bi[ζ] are affine in ζ]

♣ In our now circumstances, a natural Robust Counterpart of LP is the problem

Find t and functions φj(·) such that the decision rules xj = φj(Pjζ) make all the
constraints feasible for all perturbations ζ ∈ Z, while minimizing the guaranteed
value t of the objective:

min
t,{φi(·)}

{
t :

∑
j cj[ζ]φj(Pjζ) ≤ t∀ζ ∈ Z∑
j φj(Pjζ)Aj[ζ]− b[ζ] ≥ 0 ∀ζ ∈ Z

}
(ARC)

2.97

♣ Very bad news: The Adjustable Robust Counterpart

min
t,{φi(·)}

{
t :

∑
j cj[ζ]φj(Pjζ) ≤ t∀ζ ∈ Z∑
j φj(Pjζ)Aj[ζ]− b[ζ] ≥ 0 ∀ζ ∈ Z

}
(ARC)

of uncertain LP is an infinite-dimensional optimization program and as such typically
is absolutely intractable: How could we represent efficiently general-type functions of
many variables, not speaking about how to optimize with respect to these functions?
♣ Remedy (perhaps?): Let us restrict the decision rules xj = φj(Pjζ) to be easily
representable – specifically, affine – functions:

φj(Pjζ) ≡ µj + νTj Pjζ.

With this dramatic simplification, (ARC) becomes a finite-dimensional (still semi-
infinite) optimization problem in new non-adjustable variables µj, νj

min
t,{µj,νj}

{
t :

∑
j cj[ζ](µj + νTj Pjζ) ≤ t∀ζ ∈ Z∑
j(µj + νTj Pjζ)Aj[ζ]− b[ζ] ≥ 0 ∀ζ ∈ Z

}
(AARC)

2.98

♣ We have associated with uncertain LP

LP =
{

minx
{
cT [ζ]x : A[ζ]x− b[ζ] ≥ 0

}
: ζ ∈ Z

}
[cj[ζ], Aij[ζ], bi[ζ] are affine in ζ]

and the “information matrices” P1, ..., Pn the Affinely Adjustable Robust Counterpart

min
t,{µj,νj}

{
t :

∑
j cj[ζ](µj + νTj Pjζ) ≤ t ∀ζ ∈ Z∑
j(µj + νTj Pjζ)Aj[ζ]− b[ζ] ≥ 0 ∀ζ ∈ Z

}
(AARC)

♠ Relatively good news:
A. AARC is by far more flexible than the usual (non-adjustable) RC of LP.
B. As compared to ARC, AARC has much more chances to be computationally tractable:
— With “fixed recourse”, where the coefficients of adjustable variables are certain,
AARC has the same tractability properties as RC: If the perturbation set Z is CQr (or
polyhedrally representable), (AARC) is equivalent to an explicit CQ (resp., LP) program.
— In the general case, (AARC) may be computationally intractable; however, under mild
assumptions on the perturbation set, (AARC) admits “tight” computationally tractable
approximation.

2.99

Example: Simple Inventory Model. There is a single-product inventory system with
• a single warehouse which should at any time store at least Vmin and at most Vmax units
of the product;
• uncertain demands dt of periods t = 1, ..., T known to vary within given bounds:

dt ∈ [d∗t(1− θ), d∗t(1 + θ)], t = 1, ..., T

(θ is the uncertainty level). No backlogged demand is allowed!
• I factories from which the warehouse can be replenished:
— at the beginning of period t, you may order pt,i units of product from factory i. Your
orders should satisfy the constraints

0 ≤ pt,i ≤ Pi(t) [bounds on orders per period]∑
t pt,i ≤ Qi [bounds on cumulative orders]

— there is no delivery delay
— order pt,i costs you ci(t)pt,i.

The goal is to minimize the total cost of the orders.

2.100

♠ With certain demand, the problem can be modelled as the LP program

min pt,i,i≤I,t≤T,
vt,2≤t≤T+1

∑
t,i ci(t)pt,i [total cost]

s.t.

vt+1 − vt −
∑

i pt,i = −dt, t = 1, ..., T
[

state equations. vt: inventory level
at the beginning of day t (v1 is given)

]
Vmin ≤ vt ≤ Vmax,2 ≤ t ≤ T + 1 [bounds on states]

0 ≤ pt,i ≤ Pi(t), i ≤ I, t ≤ T [bounds on orders]∑
t pt,i ≤ Qi, i ≤ I

[
cumulative bounds

on orders

]
♠ With uncertain demand, it is natural to assume that the orders pt,i may depend on
the demands of the preceding periods 1, ..., t−1. The analysis variables vt are allowed to
depend on the entire true data; in fact, it suffices to allow for vt to depend on d1, ..., dt−1.
• Applying the AARC methodology, we make pt,i and vt affine functions of past demands:

pt,i = φ0
t,i +

∑
1≤τ<t φ

τ
t,idτ

vt = ψ0
t +

∑
1≤τ<tψ

τ
t dτ

2.101

♣ The AARC is the following semi-infinite LP in non-adjustable design variables φ’s and
ψ’s:

minC,φτt,i,ψτ
t
C

s.t. ∑
t,i ci(t)

[
φ0
t,i +

∑
1≤τ<t φ

τ
t,idτ

]
≤ C[

ψ0
t+1 +

∑t
τ=1ψ

τ
t+1dτ

]
−
[
ψ0
t +

∑t−1
τ=1ψ

τ
t dτ

]
−
∑

i

[
φ0
t,i +

∑t−1
τ=1 φ

τ
t,idτ

]
= −dt

Vmin ≤
[
ψ0
t +

∑t−1
τ=1ψ

τ
t dτ

]
≤ Vmax

0 ≤
[
φ0
t,i +

∑t−1
τ=1 φ

τ
t,idτ

]
≤ Pi(t)∑

t

[
φ0
t,i +

∑t−1
τ=1 φ

τ
t,idτ

]
≤ Qi

The constraints should be valid for all values of “free” indices and all demand realizations
d = {dt}Tt=1 from the “demand uncertainty box”

D = {d : d∗t(1− θ) ≤ dt ≤ d∗t(1 + θ),1 ≤ t ≤ T}.
♣ The AARC can be straightforwardly converted to a usual LP and easily solved.

2.102

♣ In the numerical illustration to follow:
• the planning horizon is T = 24
• there are I = 3 factories with per period capacities Pi(t) = 567 and cumulative
capacities Qi = 13600
• the nominal demand d∗t is seasonal:

0 5 10 15 20 25
400

600

800

1000

1200

1400

1600

1800

d∗t = 1000
(

1 + 0.5 sin
(
π(t−1)

12

))
demand trajectories: nominal, extreme, sample

• the per-unit ordering costs ci(t) also are seasonal:

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

per-unit ordering costs of factories vs. t

ci(t) = ci

(
1 + 0.5 sin

(
π(t−1)

12

))
, c1 = 1, c2 = 1.5, c3 = 2

• v1 = Vmin = 500, Vmax = 2000
• demand uncertainty θ = 20%

2.103

♣ Results:

• The AARC optimal value is 35542.
Note: The non-adjustable RC is infeasible even at 5% uncertainty level!

• With uniformly distributed in the range ±20% demand perturbations, the average,
over 100 simulations, AARC management cost is 35121.
Note: Over the same 100 simulations, the average “utopian” management cost
(optimal for a priori known demand trajectories) is 33958, i.e., is by just 3.5% (!)
less than the average AARC management cost.

2.104

Comparison with Dynamic Programming. When applicable, DP is the technique
for dynamical decision-making under uncertainty – in (worst-case-oriented) DP, one
solves the Adjustable Robust Counterpart of uncertain LP in question, with no ad hoc
simplifications like “let us restrict ourselves with affine decision rules”.
Unfortunately, DP suffers from “curse of dimensionality” – with DP, the computational
effort blows up rapidly as the state dimension of the dynamical process grows. Usually
state dimension 4 is already “too big”.
Note: There is no “curse of dimensionality” in AARC!
• In our toy Inventory model, the state dimension is 4 (what matters for the future, is
the current amount of product at the warehouse and 3 remaining cumulative capacities
of the 3 factories). Thus, DP is hardly applicable.
• However, reducing the number of factories to 1, increasing the per period capacity of
the remaining factory to 1800 and making its cumulative capacity +∞, we reduce the
state dimension to 1 and make DP easily implementable. With this setup,
— the DP (that is, the “absolutely best”) optimal value is 31270
— the computed AARC optimal value is 31514 – just by 0.8% worse! In fact, 0.8% is
due to rounding errors — it was shown [Bertsimas,Iancu,Parrilo’09] that in the case in
question the ARC and the AARC optimal values are the same!

2.105

Whether Conic Quadratic Programming exists?
Fast Polyhedral Approximation of Lorentz Cone

♠ Fact: The canonical polyhedral representation X = {x ∈ Rn : Ax ≤ b} of the projection

X = {x : ∃u : Px+Qu ≤ r}
of a polyhedral set X+ = {[x;u] : Px + Qu ≤ r} given by a moderate number of linear
inequalities in variables x, u can require a huge number of linear inequalities in variables
x.
Question: Can we use this phenomenon in order to approximate to high accuracy a
non-polyhedral set X ⊂ Rn by projecting onto Rn a higher-dimensional polyhedral and
simple (given by a moderate number of linear inequalities) set X+ ?

2.106

♠ The outlined possibility does exist when X is the Lorentz cone.
Theorem: For every n and every ε, 0 < ε < 1/2, one can point out a polyhedral set L+

given by an explicit system of homogeneous linear inequalities in variables x ∈ Rn, t ∈ R,
w ∈ Rk:

L+ = {[x; t;w] : Px+ tp+Qw ≤ 0} (!)

such that
• the number of inequalities in the system (≈ 2n ln(1/ε)) and the dimension of the slack
vector w (≈ 0.7n ln(1/ε)) do not exceed O(1)n ln(1/ε)
• the projection

L = {[x; t] : ∃w : Px+ tp+Qw ≤ 0}
of L+ on the space of x, t-variables is in-between the Second Order Cone and (1 + ε)-
extension of this cone:

Ln+1 := {[x; t] ∈ Rn+1 : ‖x‖2 ≤ t} ⊂ L ⊂ Ln+1
ε := {[x; t] ∈ Rn+1 : ‖x‖2 ≤ (1 + ε)t}.

In particular, we have

B1
n ⊂ {x : ∃w : Px+ p+Qw ≤ 0} ⊂ B1+ε

n
Br
n = {x ∈ Rn : ‖x‖2 ≤ r}

2.107

Note: When ε = 1.e-17, a usual computer does not distinguish between r = 1 and
r = 1 + ε. Thus, for all practical purposes, the n-dimensional Euclidean ball admits
polyhedral representation with ≈ 28n variables w and ≈ 79n linear inequality constraints.
Note: A straightforward representation X = {x : Ax ≤ b} of a polyhedral set X satisfying

B1
n ⊂ X ⊂ B1+ε

n

requires at least N = O(1)ε−
n−1

2 linear inequalities. With n = 100, ε = 0.01, we get

N ≥ 3.0e85 ≈ 300,000× [# of atoms in universe]

With “fast polyhedral approximation” of B1
n, a 0.01-approximation of B100 requires just

922 linear inequalities on 100 original and 325 additional variables.

2.108

♣With fast polyhedral approximation of the cone Ln+1 = {[x; t] ∈ Rn+1 : ‖x‖2 ≤ t}, Conic
Quadratic Optimization programs “for all practical purposes” become LO programs. For
example, by what we know about CQr functions/sets, the program

minimize cTx subject to
Ax = b
x ≥ 0(

8∑
i=1
|xi|3

)1/3

≤ x1/7
2 x

2/7
3 x

3/7
4 + 2x1/5

1 x
2/5
5 x

1/5
6

5x2 ≥ 1
x1/2

1 x2
2

+ 2
x1/3

2 x3
3x

5/8
4

can be in a systematic fashion converted to Conic Quadratic Programming and thus
”for all practical purposes” is just an LP program.

2.109

Building Fast Polyhedral Approximation

♣ Goal: To nearly represent by linear inequalities the set
Ln+1 = {[x1; ...;xn; t] :

√
x2

1 + ...+ x2
n ≤ t}

that is, to find a polyhedrally represented set
L̂ = {[x = [x1; ...;xn; t] : ∃w : Px+ tp+Qw ≤ 0}

such that
Ln+1 ⊂ L̂ ⊂ Ln+1

ε ,

Ln+1
ε = {[x1; ...;xn; t] :

√
x2

1 + ...+ x2
n ≤ (1 + ε)t}

• ε > 0: given tolerance.
♠ Observation: It suffices to solve our problem when n = 2.
Reason: Inequality

√
x2

1 + ...+ x2
n ≤ t can be represented by a system of similar inequal-

ities with 3 variables in each.

2.110

Example: To represent the set
L6 = {[x; t] ∈ R6 :

√
x2

1 + x2
2 + ...+ x2

5 ≤ t},
by a system of constraints of the form

√
p2 + q2 ≤ r, we

♠ add to x, t variable w1 and write down the system√
x2

4 + x2
5 ≤ w1,

√
x2

1 + x2
2 + x2

3+w2
1 ≤ t

• the system does represent L6 – the projection of its solution set on the space of
x, t-variables is exactly L6

• the “sizes” (# of variables involved) of the constraints in the system are ≤ 5, while
the size of the constraint in the original description of L6 was 6.
♠ add to x, t, w1 variable w2 and write down the system√

x2
4 + x2

5 ≤ w1,
√
x2

3 + w2
1 ≤ w2,

√
x2

1 + x2
2 + w2

2 ≤ t
This system still represents L6, and the maximal size of its constraints is 4.
♠ add to x, t, w1, w2 variable w3 and write down the system√

x2
4 + x2

5 ≤ w1,
√
x2

3 + w2
1 ≤ w2,

√
x2

2 + w2
2 ≤ w3,

√
x2

1 + w2
3 ≤ t

This system represents L6, and all its constraints are of the form
√
p2 + q2 ≤ r. We are

done.

2.111

Note: The above recipe clearly extends from the 6-dimensional case to the general one.
Representing Ln+1 via constraints of the form

√
p2 + q2 ≤ r requires n − 2 additional

variables and n− 1 constraints.
Note: The number of steps in the latter procedure can be reduced from n − 2 to
Ceil(log2(n)) − 1 by using the same construction as when building CQR of the set
{(t, x1, ..., x2µ) ≥ 0 : t ≤ (x1, ..., x2µ)1/2µ}; the resulting number of constraints of the form√
p2 + q2 ≤ r and of additional variables still are (at most) n− 1 and n− 2 respectively.

Illustration:

L8 = {[x; t] ∈ R8+1 : t ≥
√∑8

i=1x
2
i } =

{
[x; t] : ∃ui :

u1 ≥
√
x2

1 + x2
2, u2 ≥

√
x2

3 + x2
4, u3 ≥

√
x2

5 + x2
6, u4 ≥

√
x2

7 + x2
8

u5 ≥
√
u2

1 + u2
2, u6 ≥

√
u2

3 + u2
4

t ≥
√
u2

5 + u2
6

}
Consequently:

A Conic Quadratic Representation always can be converted, without increasing
significantly its size, to a CQR involving just 3D Lorentz cones.

2.112

♠ Conclusion: In order to find a tight polyhedral approximation of
Ln+1 = {[x1; ...;xn; t] :

√
x2

1 + ...+ x2
n ≤ t} ,

we can
• represent the constraint

√
x2

1 + ...+ x2
n ≤ t by a system of inequalities of the form√

p2 + q2 ≤ r
• replace every one of the resulting constraints by its tight polyhedral approximation.
Note: We should account for “accumulation of errors.” This is an easy task...

2.113

Fast polyhedral approximation of

L3 = {[p; q; r] :
√
p2 + q2 ≤ r}

“Ice-cream” cone L3

♠ Given variables p, q, r, we choose a positive integer K, and consider K + 1 points
P1, ..., PK+1 on the 2D plane as follows.
• The first point P1 = [u1; v1] satisfies

u1 ≥ |p|, v1 ≥ |q|
which can be represented by a system of 4 linear constraints in variables p, q, u1, v1.

2.114

• The relation between Pk = [uk; vk] and Pk+1 = [uk+1; vk+1] is as follows.
— we rotate Pk clockwise by the angle φk = π/2k+1, thus getting a point Qk.
— we reflect Qk w.r.t. the u-axis, thus getting point Q′k.
— we impose on Pk+1 = [uk+1; vk+1] the restriction to belong to the vertical line passing
through Qk and Q′k and to be not lower than Qk and Q′k.

u

v

u

vPk

Qk

Q′k

Pk+1

φk Pk

Q′k

Qk

Pk+1

φk

2.115

♠ Note: Relations between Pk = [uk; vk] and Pk+1 = [uk+1; vk+1] amount to a system of
linear constraints

uk+1 = cos(φk)uk + sin(φk)vk
right hand side: u-coordinate of Qk and Q′k

vk+1 ≥ − sin(φk)uk + cos(φk)vk
right hand side: v-coordinate of Qk

vk+1 ≥ sin(φk)uk − cos(φk)vk
right hand side: v-coordinate of Q′k

in variables uk, vk, uk+1, vk+1.

2.116

♠ Let us write down all built so far constraints on original and additional variables
u1 ≥ p
u1 ≥ −p
v1 ≥ q
v2 ≥ −q

uk+1 = cos(φk)uk + sin(φk)vk
vk+1 ≥ − sin(φk)uk + cos(φk)vk
vk+1 ≥ sin(φk)uk − cos(φk)vk

k = 1, ...,K
and augment this system by the requirement for PK+1 to be close to the segment [0, r]
of the u-axis:

0 ≤ uK+1 ≤ r, 0 ≤ vK+1 ≤ tan(φK) · r
Observation 1: When p, q, r can be augmented by properly selected u’s and v’s to
satisfy the above constraints, we have√

p2 + q2 ≤ r
√

1 + tan2(φK)
Indeed, by the above constraints on p, q, r and the additional variables, the points
Pk = [uk; vk] satisfy

‖[p; q]‖2 ≤ ‖P1‖2 ≤ ... ≤ ‖PK+1‖2 =
√
u2
K+1 + v2

K+1 ≤ r
√

1 + tan2(φK).

2.117

u1 ≥ p
u1 ≥ −p
v1 ≥ q
v2 ≥ −q

uk+1 = cos(φk)uk + sin(φk)vk
vk+1 ≥ − sin(φk)uk + cos(φk)vk
vk+1 ≥ sin(φk)uk − cos(φk)vk

k = 1, ...,K
0 ≤ uK+1 ≤ r, 0 ≤ vK+1 ≤ tan(φK) · r

Observation 2: When
√
p2 + q2 ≤ r, p, q, r indeed can be augmented by u’s and v’s to

satisfy our constraints.
This combines with Observation 1 to imply that the projection of the polyhedral set
given by our constraints onto the space of p, q, r variables is in-between the L3 and L3

δK
,

with

δK =
√

1 + tan2(φK)− 1

=
√

1 + tan2
(

π
2K+1

)
− 1 ≤ π2

22K+2 .

⇒To make δK ≤ ε, we need just O(1) ln(1/ε) additional variables and linear constraints!

2.118

♠ To justify Observation 2, let us augment p, q with u’s and v’s which “rigidly” satisfy
the magenta constraints, specifically, let us set u1 = |p|, v1 = |q|, and let Pk+1 be the
“highest” of the points Qk, Q′k:

u

v

u

v

Pk

Pk+1 = Qk

Q′k

Pk+1 = Q′k

Pk

Qk

Then
r ≥

√
p2 + q2 = ‖[p; q]‖2 = ‖P1‖2 = ... = ‖PK+1‖2

and the angle between Pk+1 and the nonnegative ray of the u-axis does not exceed
φk = π

2k+1 .
⇒PK+1 = [uK+1, vK+1] indeed satisfies

0 ≤ uK+1 ≤ r and 0 ≤ vK+1 ≤ tan(φK) · r.

2.119

♥ To justify the claim on the angles, observe that with our “rigid” construction of
P1, ..., PK+1,
• P1 lives in the first quadrant, and P2 is obtained from P1 by rotating clockwise by the
angle φ1 = π/4 (and, perhaps, reflecting the result w.r.t. the u-axis to bring it to the
first quadrant).
After rotation, the angle between the point and the u-axis does not exceed π/4, and
reflection, if any, keeps this angle intact
⇒P2 lives in the first quadrant and makes angle at most φ1 = π/4 with the u-axis
⇒P3, which is obtained from P2 by rotating clockwise by the angle φ2 = π/8 (and,
perhaps, reflecting the result w.r.t. u-axis to bring it to the first quadrant), lives in the
first quadrant and makes the angle at most φ2 = π/8 with the u-axis
⇒⇒PK+1 lives in the first quadrant and makes angle at most φK = π

2K+1 with the
u-axis.

2.120

♣ The simplest way to build a polyhedral approximation of the Lorentz cone is to take the
tangent planes along a “fine” finite grid of generators and to use, as the approximation,
the resulting polyhedral cone:

This approach is a complete failure: the number of tangent planes required to get an
0.5-approximation of Lm is at least

N =
√

2π(m− 2) exp{m/6},
which is > 429,481,377 for m = 100.
♣ With our approach, we approximate Lm by a projection of a higher-dimensional poly-
hedron. When projecting an N-dimensional polyhedron onto a plane of dimension << N ,
the number of facets may grow up exponentially, so that a low-dimensional projection
of a “simple” high-dimensional polyhedron may have astronomically many facets. With
our approach, we build a family of polyhedral cones Pm,k ⊂ RO(mk) given by just O(mk)
linear inequalities, while their projections P̂m,k on Rm have enough facets to approximate
Lm within accuracy exp{−O(k)}:

2.121

♣ Approximating sets by projections of higher-dimensional polyhedral sets we can dra-
matically reduce the “size” of approximation. For example,
• When approximating the unit 2D circle by a projection of a higher-dimensional poly-
tope P , we can get approximations as follows:
• with P given by 12 inequalities in 10 variables – accuracy 5.e-3, as good as circum-
scribed polygon with 16 sides
• with P given by 18 inequalities in 13 variables – accuracy 3.e-4, as good as circum-
scribed polygon with 127 sides
• with P given by 30 inequalities in 19 variables – accuracy 7.e-8, as good as circum-
scribed polygon with 8,192 sides
• with P given by 54 inequalities in 31 variables – accuracy 4.e-15, as good as circum-
scribed polygon with 34,200,933 sides

2.122

♠ Polyhedral approximation of Lm is basically the same as polyhedral approximation of
m-dimensional Euclidean ball

Bm = {x ∈ Rm : ‖x‖2 ≤ 1}.
There is a less sophisticated way to approximate Euclidean balls by projections of poly-
hedral sets:

Theorem [Lindenstrauss-Johnson]: For two positive integers N,n with N ≥ 10n, ran-
dom n-dimensional projection of N-dimensional unit box – the set

B = {x ∈ Rn : ∃y ∈ RN : x = Ay, −1 ≤ y1, ..., yN ≤ 1}
[A: drawn at random from Gaussian distribution]

with probability approaching one as N,n grow, is in-between two n-dimensional Euclidean
balls with the ratio of radii (1 +O(

√
n/N)).

This result has tremendous theoretical implications. However,
— no individual matrices A yielding “nearly round” B are known (pity! these matrices
would be ideally suited for Compressed Sensing)
Note: Our fast polyhedral approximation is explicit!
— to make B an ε-approximation of Bn, you need N = O(1/ε2)n
Note: With fast polyhedral approximation, you need much smaller N : N = O(ln(1/ε))n

2.123

♠ Open question: With fast polyhedral approximation, centrally symmetric ball Bn

is ε-approximated by the projection of a highly asymmetric polyhedron of dimension
N = O(ln(1/ε))n given by M = O(N) linear inequalities. Is it possible to make this
higher-dimensional polyhedron centrally symmetric, preserving the type of dependence
of N,M on n and ε?

2.124

III. SEMIDEFINITE

PROGRAMMING

Preliminaries

• As a linear space, the space Rm×n of m × n matrices can be identified with Rmn by
writing columns of a matrix one beneath another:

A = [aij] i=1,...,m

j=1,...,n
↔ Vec(A) = [a11; a21; ...; am1;a12; ...; am2;...;a1n; ...; amn]

The inner product of matrices induced by this representation (a.k.a. Frobenius inner
product) is

〈A,B〉 ≡
∑

i,jAijBij = Tr(ATB) = Tr(ABT)
[
A,B ∈ Rm×n][

Tr(C) =
∑n

i=1Cii, C ∈ Rn×n, is the trace of C
]

• In particular, the space Sm of m × m symmetric matrices equipped with the inner
product inherited from Rm×m:

〈A,B〉 ≡
∑

i,j
AijBij = Tr(ATB) = Tr(AB)

is a Euclidean space (dimSm = m(m+1)
2

).

3.1

• A matrix A ∈ Sm is called positive semidefinite (notation: A � 0) if the quadratic form
associated with A is nonnegative everywhere:

A � 0⇔ ξTAξ ≥ 0 ∀ξ ∈ Rm,

When ξTAξ > 0 whenever ξ 6= 0, A is called positive definite (A � 0).
• The positive semidefinite m×m matrices form a cone Sm+ (closed, convex, pointed and
with a nonempty interior) in Sm:

Sm+ =
{
A ∈ Sm : ξTAξ ≥ 0 ∀ξ ∈ Rm

}
The interior of this cone is comprised of positive definite matrices:

intSm+ = {A ∈ Sm : A � 0}

3.2

Sm+ =
{
A ∈ Sm : ξTAξ ≥ 0 ∀ξ ∈ Rm

}
• Equivalent descriptions of Sm+: an m×m matrix A is positive semidefinite

— iff A is symmetric (A = AT) and all its eigenvalues are nonnegative;
— iff A can be decomposed as A = DTD
— iff A can be represented as a sum of symmetric dyadic matrices:

A =
∑

jdjd
T
j ;

— iff A = UTΛU with orthogonal U and diagonal Λ, the diagonal entries of Λ being
nonnegative;
— iff A is symmetric (A = AT) and all principal minors of A are nonnegative. In
particular,

0 �
[
a b
b c

]
∈ S2 ⇔ a ≥ 0 & c ≥ 0 & ac− b2 ≥ 0.

• As every regular cone, Sm+ defines a “good” partial ordering on Sm:

A � B ⇔ A−B � 0⇔ ξTAξ ≥ ξTBξ ∀ξ[
A = AT , B = BT are of the same size

]

3.3

• Useful observation: Validity of � inequality is preserved when multiplying both sides
by a matrix Q from the left and by QT from the right:

A � B ⇒ QTAQ � QTBQ
[
A,B ∈ Sm, Q ∈ Rm×k]

Indeed, {
ξTAξ ≥ ξTBξ ∀ξ

}
⇒

ηTQTA Qη︸︷︷︸
ξ

≥ ηTQTBQη ∀η

• Useful observation: When A and B are rectangular matrices such that Tr(AB) is
well defined (i.e., AB is well defined and square), we have

Tr(AB) = Tr(BA).

Warning: The above observation does not mean that the trace of the product of several
matrices is independent of the order of factors! In general, Tr(ABC) is not the same as
Tr(BAC). The above observation says only that if Tr(ABC) makes sense (i.e., ABC is
a square matrix), then Tr(ABC) = Tr(BCA) = Tr(CAB).

3.4

• Observation: The semidefinite cone is self-dual:(
Sm+
)
∗ ≡

{
A ∈ Sm : Tr(AB) ≥ 0 ∀B ∈ Sm+

}
= Sm+.

Indeed,

ξTAξ = Tr(ξTAξ) = Tr(AξξT)

It follows that if A ∈ Sm is such that Tr(AB) ≥ 0 for all B � 0, then A � 0:

ξ ∈ Rm ⇒ B = ξξT � 0⇒ Tr(AB) = ξTAξ ≥ 0

Vice versa, if A � 0, then Tr(AB) ≥ 0 for all B � 0:

B � 0⇒ B =
∑

jdjd
T
j ⇒ Tr(AB) =

∑
jTr(AdjdTj) =

∑
jd
T
j Adj ≥ 0.

3.5

Semidefinite program

• A semidefinite program is a conic program associated with the semidefinite cone:

min
x∈Rn

{
cTx : Ax−B � 0

[
⇔ Ax−B ≥Sm+

0
]}[

Ax =
∑n

i=1xiAi, Ai ∈ Sm
]

A constraint of the type

x1A1 + ...+ xnAn � B
with variables x1, ..., xn is called an LMI – Linear Matrix Inequality. Thus, a semidefinite
program is to minimize a linear objective under an LMI constraint.
• Observation: A system of LMI constraints

Ai(x) :=
∑

j
xjAij −Bi � 0, i = 1, ...,m

is equivalent to single LMI constraint

Diag{A1(x), ...,Am(x)} � 0.

• For notation Diag{...}, see slide 0.3

3.6

Program dual to an SDP program

min
x

{
cTx : Ax−B ≡

∑n

j=1
xjAj −B � 0

}
(SDPr)

According to our general scheme, the problem dual to (SDPr) is built as follows:

• We take inner product of both sides of conic constraint by Lagrange multiplier Y � 0

(recalls that semidefinite cone is self-dual), thus arriving at the linear

inequality
n∑

j=1

xjTr(Y Aj) ≥ Tr(Y B) (∗)

• We impose on Y additional requirement — the left hand side in (*)

should be cTx identically in x, implying that Tr(BY) is a lower bound on

Opt(SDPr)

• We maximize this bound in Y under the above restrictions on the La-

grange multiplier, thus arriving at the dual problem

max
Y

{
Tr(BY) : Tr(Y Aj) = cj, j = 1, ..., n, Y � 0

}
(SDDl)

3.7

SDP optimality conditions

min
x

{
cTx : Ax−B ≡

∑n

j=1
xjAj −B � 0

}
(SDPr)

max
Y

{
Tr(BY) : Tr(AjY) = cj, j = 1, ..., n; Y � 0

}
(SDDl)

• Assume that

(!) both (SDPr) and (SDDl) are essentially strictly feasible,

so that by Conic Duality Theorem both problems are solvable with equal

optimal values.

By Conic Duality, the necessary and sufficient condition for a primal-dual

feasible pair (x, Y) to be primal-dual optimal is that

Tr([Ax−B]︸ ︷︷ ︸
“primal slack”X

Y) = 0

• For a pair of symmetric positive semidefinite matrices X and Y , one

has

Tr(XY) = 0⇔ XY = Y X = 0.

3.8

min
x

{
cTx : Ax−B ≡

∑n

j=1
xjAj −B � 0

}
(SDPr)

max
Y
{Tr(BY) : Tr(AjY) = cj, j = 1, ..., n; Y � 0} (SDDl)

(!) both (SDPr) and (SDDl) are essentially strictly feasible,

• Thus, under assumption (!) a primal-dual feasible pair (x, Y) is primal-

dual optimal iff

[Ax−B]Y = Y [Ax−B] = 0

Cf. Linear Programming:

(P): min
x

{
cTx : Ax− b ≥ 0

}
(D): max

y

{
bTy : ATy = c, y ≥ 0

}
(x, y) primal-dual optimal

m
(x, y) primal-dual feasible and yj[Ax− b]j = 0 ∀j

3.9

• For a pair of symmetric positive semidefinite matrices X and Y , one has
Tr(XY) = 0⇔ XY = Y X = 0.

Reason: Existence of matrix square root: for X � 0, there exists exactly one symmetric
matrix, denoted X1/2 and called matrix square root of X, such that

X1/2 � 0 & [X1/2]2 = X.

• X1/2 is readily given by eigenvalue decomposition of X � 0:

X = UDiag{λ1, ..., λm}UT ⇒ X1/2 = UDiag{
√
λ1, ...,

√
λm}UT [UTU = Im]

Now, if X � 0, Y � 0 and Tr(XY) = 0, we have

0 = Tr(XY) = Tr(X1/2X1/2Y 1/2Y 1/2) = Tr([X1/2Y 1/2][Y 1/2X1/2])
= Tr([X1/2Y 1/2][X1/2Y 1/2]T) =

∑
i,j[X

1/2Y 1/2]2
ij

⇒X1/2Y 1/2 = 0 ⇒XY = X1/2[X1/2Y 1/2]Y 1/2 = 0.

3.10

What can be expressed via SDP?

min
x

{
cTx : x ∈ X

}
(Ini)

• A sufficient condition for (Ini) to be equivalent to an SD program is that X is a SDr
(“SemiDefinite-representable”) set:
Definition. A set X ⊂ Rn is called SDr, if it admits SDR (“SemiDefinite Representa-
tion”)

X = {x : ∃u : A(x, u) � 0}[
A(x, u) =

∑
j
xjAj +

∑
`
u`B` + C : Rn

x ×Rk
u → Sm

]
• Given a SDR of X, we can write down (Ini) equivalently as the semidefinite program

min
x,u

{
cTx : A(x, u) � 0

}
.

3.11

♠ Same as in the case of Conic Quadratic Programming, we can
• Define the notion of a SDr function

f : Rn → R ∪ {∞}
as a function with SDr epigraph:

{(t, x) : t ≥ f(x)} =

(t, x) : ∃u : A(t, x, u) � 0︸ ︷︷ ︸
LMI

and verify that if f is a SDr function, then all its level sets

{x : f(x) ≤ a}
are SDr;
• Develop a “calculus” of SDr functions/sets with exactly the same combination rules
as for CQ-representability.

3.12

♠ Note: The calculus of CQR’s and SDR’s is fully algorithmic and can be built into a
compiler. This fact is used in CVX

Michael Grant and Stephen Boyd. CVX: Matlab software for
disciplined convex programming http://cvxr.com/cvx

• CVX is second-to-none in terms of its scope and user-friendliness “go-between” for
processing well-structured convex problems reduced to (or well approximated by) SDP.
• CVX gets on input high level MATLAB description of objective and constraints and
uses calculus of CQR’s and SDR’s to recognize that subsequent steps in this description
are covered by calculus (this is where disciplined comes from). If it is the case, CVX
automatically applies calculus rules to end up with SDR’s of objective and constraints,
and sends the resulting “standard form” SDP to SDP solver.
• The solution found by the solver is then “transformed back” to the original “problem
language” and returned to the user.

3.13

♠ CVX is extremely convenient. Consider, e.g., the problem of inscribing the largest
volume ellipsoid into a polytope {x ∈ Rn : Ax ≤ b}.
• Human formulation: Given m × n matrix A with rows aTi and b ∈ Rm, maximize
Det(X) over X ∈ Sn+ and c ∈ Rn such that ‖Xai‖2 ≤ bi − aTi c, i ≤ i ≤ m.
Explanation: We represent a candidate ellipsoid as E = {c + Xu : ‖u‖2 ≤ 1} with
X � 0. The constraints on X and c state that max

‖u‖2≤1
aTi (Xu+ c) ≤ bi for all i, i.e., that

E ⊂ {x : Ax ≤ b}, and Det(X) is proportional to the volume of E.
• CVX formulation:

[m,n]=size(A)
cvx begin
variable c(n,1)
variable X(n,n) symmetric
X == semidefinite(n)
for i=1:n

ai=A(i,:)
norm(ai*X)+ai*c <= b(i)

end
maximize det rootn(X)
cvx end

Note: CVX is enough intelligent to know SDR of the SDr function −Det1/n(X) of X ∈ Sn+
(Det1/n(X) is det rootn(X) in CVX); it knows SDR’s of tens of useful SDr functions.

3.14

When a function/set is SDr?

Proposition. Every CQr set/function is SDr as well.

Proof:
Lemma. Every direct product of Lorentz cones is SDr.

Lemma⇒Proposition: Let X ⊂ Rn be CQr:

X = {x | ∃u : A(x, u) ∈ K} ,
K being a direct product of Lorentz cones and A(x, u) being affine.
By Lemma,

K = {y : ∃v : B(y, v) � 0}
with affine B(·, ·). It follows that

X =

x : ∃u, v : B (A(x, u), v) � 0︸ ︷︷ ︸
LMI

 ,

which is a SDR for X.

3.15

Lemma. Every direct product of Lorentz cones is SDr.
Proof. It suffices to prove that a Lorentz cone Lm is a SDr set (since SD-representa-
bility is preserved when taking direct products).
To prove that Lm is SDr, let us make use of the following
Lemma on Schur Complement. A symmetric block matrix

A =

(
P QT

Q R

)
with positive definite R is positive (semi)definite iff the matrix

P −QTR−1Q

is positive (semi)definite.

3.16

Trivial Remark: For X = [xij]i,j≤n � 0 one has xii ≥ 0 and x2
ij ≤ xiixjj. In particular, if a

diagonal entry in X � 0 is 0, all entries in the corresponding row and column are zeros
as well.
Indeed, in X � 0 all principal minors, including 1 × 1 minors xii, xjj and 2 × 2 minor
xiixjj − x2

ij should be nonnegative.
LSC⇒Lemma: Consider the linear mapping[

x1
x2
...
xm

]
7→ A(x) =

xm x1 x2 x3 ... xm−1
x1 xm
x2 xm
x3 xm
... . . .

xm−1 xm

We claim that

Lm = {x : A(x) � 0} .
Indeed,

Lm =

{
x ∈ Rm : xm ≥

√
x2

1 + ...+ x2
m−1

}
and therefore
• if x ∈ Lm is nonzero, then xm > 0 and

xm − (x2
1 + x2

2 + ...+ x2
m−1)/xm ≥ 0

so that A(x) � 0 by LSC. If x = 0, then A(x) = 0 � 0.
• if A(x) � 0 and A(x) 6= 0, then xm > 0 by Trivial Remark and, by LSC,

xm − (x2
1 + x2

2 + ...+ x2
m−1)/xm ≥ 0⇒ x ∈ Lm.

And if A(x) = 0, then x = 0 ∈ Lm.

3.17

Lemma on Schur Complement. A symmetric block matrix

A =

[
P QT

Q R

]
with positive definite R is positive (semi)definite iff the matrix

P −QTR−1Q

is positive (semi)definite.
Proof. A is � 0 if and only if

inf
v

[
u
v

]T [
P QT

Q R

] [
u
v

]
≥ 0 ∀u. (∗)

When R � 0, the left hand side inf can be easily computed and turns to be

uT(P −QTR−1Q)u.

Thus, (∗) is valid if and only if

uT(P −QTR−1Q)u ≥ 0 ∀u,
i.e., iff

P −QTR−1Q � 0.

3.18

♠ Convention: For a symmetric m×m matrix X,

λ(X) = [λ1(x);λ2(X); ...;λm(X)] ∈ Rm

stands for the vector of eigenvalues of X written down with their multiplicities in the
non-ascending order:

λ1(X) ≥ λ2(X) ≥ ... ≥ λm(X)

Examples:

λ(Im) = [1; ...; 1] ∈ Rm; λ

 2
1

2

 = [2; 2; 1].

3.19

More examples of SD-representable functions/sets

• The largest eigenvalue λmax(X) regarded as a function of m×m symmetric matrix
X is SDr:

λmax(X) ≤ t ⇔ tIm −X � 0,

Ik being the unit k × k matrix.
• The largest eigenvalue of a matrix pencil. Let M,A ∈ Sm be such that M � 0.
The eigenvalues of the pencil [M,A] are reals λ such that the matrix λM −A is singular,
or, equivalently, such that

∃e 6= 0 : Ae = λMe.

The eigenvalues of the pencil [M,A] are the usual eigenvalues of the symmetric matrix
D−1AD−T , where D is such that M = DDT .
The largest eigenvalue λmax(X : M) of a pencil [M,X] with M � 0, regarded as a function
of X, is SDr:

λmax(X : M) ≤ t ⇔ tM −X � 0.

3.20

• Sum of k largest eigenvalues. For a symmetric m ×m matrix X, let λ(X) be the
vector of eigenvalues of X taken with their multiplicities in the non-ascending order:

λ1(X) ≥ λ2(X) ≥ ... ≥ λm(X),

and let Sk(X) be the sum of k largest eigenvalues of X:

Sk(X) =
∑k

i=1λi(X) [1 ≤ k ≤ m]
[S1(X) = λmax(X); Sm(X) = Tr(X)]

The functions Sk(X) are SDr. We shall see that this fact is crucial when building SDR’s
of a wide family of useful for applications functions of eigenvalues.

3.21

• λ1(X) ≥ λ2(X) ≥ ... ≥ λm(x): eigenvalues of X ∈ Sm • Sk(X) =
∑k

i=1 λi(X)
♠ Towards SDR for Sk(X): vector case. The vector analogy of Sk(x) is the sum
sk(x) of k largest entries in x ∈ Rm.
• Recalling that the extreme points of the polytope {y ∈ Rm : 0 ≤ yi ≤ 1 ∀i,

∑
i yi = k}

are zero-one vectors with exactly k entries equal to 1, we have

sk(x) = maxy
{
xTy : 0 ≤ yi ≤ 1 ∀i,

∑
i yi = k

}
= minz,s

{∑
i zi + ks : x ≤ z + s[1; ...; 1], z ≥ 0

}
[LP Duality]

We arrive at polyhedral representation of sk(·):

sk(x) ≤ t⇔ ∃s ∈ R, z ∈ Rm :
∑
i

zi + ks ≤ t, z ≥ 0, x ≤ z + s[1; ...; 1]

3.22

• Sk(x): the sum of k largest eigenvalues of X ∈ Sm • sk(x): the sum of k largest entries
of x ∈ Rm

sk(x) ≤ t⇔ ∃s ∈ R, z ∈ Rm :
∑
i

zi + ks ≤ t, z ≥ 0, x ≤ z + s[1; ...; 1]

This suggests (suggests, not implies!) the SDR of Sk(x) as follows:

Sk(X) ≤ t⇔ ∃s, Z :

 (a) ks+ Tr(Z) ≤ t
(b) Z � 0
(c) X � Z + sIm

Proof. We should prove that
(i) If a pair X, t can be extended, by properly chosen s, Z, to a solution of (a) – (c), then
Sk(X) ≤ t;
(ii) If Sk(X) ≤ t, then the pair X, t can be extended by properly chosen s, Z, to a solution
of (a) – (c).

3.23

Sk(X) ≤ t⇔ ∃s, Z :

 (a) ks+ Tr(Z) ≤ t
(b) Z � 0
(c) X � Z + sIm

“(i) If a pair X, t can be extended, by properly chosen s, Z, to a solution of (a) – (c),
then Sk(X) ≤ t”
(i): We use the following
Basic Fact: The vector λ(X) is a �-monotone function of X ∈ Sm: X � X ′ ⇒ λ(X) ≥
λ(X ′).
Let (X, t, s, Z) solve (a) – (c). Then

X � Z + sIm [by (c)]

⇒ λ(X) ≤ λ(Z + sIm) = λ(Z) + s

 1
...
1

 [by Basic Fact]

⇒ Sk(X) ≤ Sk(Z) + sk

⇒ Sk(X) ≤ Tr(Z) + sk

[
since Sk(Z) ≤ Tr(Z)
due to (b)

]
⇒ Sk(X) ≤ t [by (a)]

3.24

(ii): Let Sk(X) ≤ t, and let X = UDiag{λ}UT , λ = λ(X), be the eigenvalue decomposi-
tion of X.

s = λk, Z = U

λ1 − λk

. . .
λk−1 − λk

0
.. .

0

︸ ︷︷ ︸

Diag{λ(Z)}

UT ,

we have
Z � 0,

Diag{λ(X)} ≤ Diag

λ(Z) + s

 1
...
1

⇒ X � Z + sIm,

t ≥ Sk(X) = ks+ Tr(Z),

so that (t,X, s, Z) solves the system of LMIs

(a) ks+ Tr(Z) ≤ t
(b) Z � 0
(c) X � Z + sIm

3.25

Basic Fact: The vector λ(X) is a �-monotone function of X ∈ Sm: X � X ′ ⇒ λ(X) ≥
λ(X ′).
Here is a hint to explanation:
♠ Question: Given a finite collection of numbers, how to find the 3-rd largest of them?
♠ An instructive answer:
• somehow throw away 2=3-1 numbers from the collection and find the maximum of
the remaining ones; this maximum depends on the pair of numbers thrown away.
• minimize this maximum over all pairs of elements you can throw away. This minimum
will be exactly the 3-rd largest number in the collection.
♠ Corollary: When increasing somehow every number in the original collection, the
third largest number cannot decrease.
Indeed, when increasing the numbers in the collection, every one of the above maxima
cannot decrease, and thus the minimum of these maxima cannot decrease as well.

3.26

Basic Fact: The vector λ(X) is a �-monotone function of X ∈ Sm: X � X ′ ⇒ λ(X) ≥
λ(X ′).
This is an immediate corollary of the following matrix analogy of the above recipe for
finding k-th largest number in a collection:
Variational Characterization of Eigenvalues: For an m×m symmetric matrix A, one
has

λk(A) = min
E∈Ek

max
e∈E:eTe=1

eTAe, (∗)

where Ek is the collection of all linear subspaces of Rm of the dimension m − k + 1
(“subspaces obtained from Rm by throwing k − 1 dimensions away”)
In particular,

λ1(A) = max
e:eTe=1

eTAe

λm(A) = min
e:eTe=1

eTAe

Note: When A �-grows, the right hand side in (∗) grows or remains the same, implying
Basic Fact.

3.27

• VCE has a lot of important consequences, e.g, the following one:
Eigenvalue Interlacement Theorem: Let A be a symmetric m×m matrix, and Â be
a (m− k)× (m− k) principal submatrix of A. Then

λi(A) ≥ λi(Â) ≥ λi+k(A).

Proof of VCE. Let λk = λk(A), an let

µk = min
E:dimE=m−k+1

max
e∈E:eTe=1

eTAe;

we should prove that µk = λk(A).
Both µk and λk remain invariant when A is replaced with UAUT with orthogonal U
⇒ It suffices to consider the case of A = Diag{λ(A)}.
λk ≥ µk: Let E = {x : x1 = ... = xk−1 = 0}. Then

dimE = m− k + 1⇒
µk ≤ max

e∈E:eTe=1
eTAe = max

ek,...,em,

e2
k

+...+e2m=1

∑m
i=kλie

2
i = λk.

λk ≤ µk: Let F = {x : xk+1 = ... = xm = 0}, so that dimF = k. For every subspace E
with dimE = m− k + 1, we have dimE + dimF > m, so that there exists a unit vector
f ∈ F ∩ E. We have

max
e∈E:eTe=1

eTAe ≥ fTAf =
∑k

i=1
λif

2
i ≥ λk

∑k

i=1
f2
i = λk.

Thus, µk ≡ min
E:dimE=m−k+1

max
e∈E:eTe=1

eTAe ≥ λk.

3.28

• To proceed, we need the following
Birkhoff Theorem: Let Pm be the set of double-stochastic m ×m matrices, that is,
matrices [pij]mi,j=1 such that

pij ≥ 0;
∑

i
pij = 1 ∀j;

∑
j
pij = 1 ∀i.

The vertices of the polytope Pm are exactly the permutation matrices, so that every
double stochastic matrix is a convex combination of permutation matrices.
Sketch of the proof: The only nontrivial claim is that an extreme point p of Pm is a
Boolean (≡ with entries 0/1) matrix.

Pm is cut off Rm2

by m2 inequalities pij ≥ 0 and 2m − 1 linearly independent linear
equalities (”if all row sums and all but one column sums in a square matrix are equal to
1, than all row and column sums are equal to 1”).
⇒ extreme point p should make m2 − (2m− 1) of the bounds pij ≥ 0 active
⇒ there is a column in p with at most one nonzero
⇒ p has an entry equal to 1, and all remaining entries in the row and the column of this
entry are zeros.
Eliminating from p the row and the column of an entry equal to 1, we get a (clearly
extreme) point of Pm−1

⇒The claim can be proved by induction in m.

3.29

Definition: A function f : Rn → R ∪ {+∞} is called symmetric, if f(x) remains intact
when permuting the entries of x, as is the case, e.g., when f(x) =

∑
i xi or f(x) =

x1x2...xn, or f(x) =
∑

ln(xi).

♠ Corollary of Birkhoff’s Theorem: Let f(x) be a symmetric convex function on Rm,
and let π be a double-stochastic m×m matrix. Then

f(πx) ≤ f(x) ∀x ∈ Rm.

Proof. By Birkhoff Theorem, πx is a convex combination of permutations xi of x.
Therefore, by Jensen’s Inequality, f(πx) is not greater than max

i
f(xi), and this is exactly

f(x) due to the symmetry of f .

3.30

♠ Corollary of Corollary: Let f(x) be a symmetric convex function on Rm. Then the
function

F (X) = f(λ(X))

is convex on Sm, and, moreover,

F (X) = max
U :UTU=I

f(Dg(UXUT)). (∗)

Reason (to be explained at the next slide): Dg(UXUT) is the image of λ(X) under
multiplication by a double-stochastic matrix.

• For notation Dg(·), see slide 0.3

3.31

Corollary of Corollary: Let f(x) be a symmetric convex function on Rm. Then the
function

F (X) = f(λ(X))

is convex on Sm, and, moreover,

F (X) = max
U :UTU=I

f(Dg(UXUT)). (∗)

Proof: It suffices to verify (∗); indeed, given (∗), F (·) is convex as the upper bound,
w.r.t. orthogonal U , of the family of (clearly convex) functions fU(·).
For properly chosen orthogonal U we have

UXUT = Diag{λ(X)} ⇒ max
U :UTU=I

f(Dg(UXUT)) ≥ f(λ(X)).

To prove the opposite inequality, observe that every matrix of the form UXUT with
orthogonal U is of the form VDiag{λ(X)}V T with orthogonal V as well. Now,

[Dg(UXUT)]i = [VDiag{λ(X)}V T]ii =
∑

j
V 2
ijλj(X),

that is, Dg(UXUT) = πλ(X) for the double stochastic matrix π = [V 2
ij]i,j. Therefore

f(Dg(UXUT)) = f(πλ(X)) ≤ f(λ(X)).

3.32

♠ Corollary of Corollary of Corollary: Let f be a convex symmetric function on Rm.
Then

f(Dg(X)) ≤ f(λ(X))

for every symmetric matrix X.
For example, for every symmetric matrix X with the vector of eigenvalues λ one has
• The sum of k largest diagonal entries of X does not exceed Sk(X) = λ1 + ...+ λk
[f(x) = max

i1<i2<...<ik
[xi1 + ...+ xik] is the sum of k largest entries in x]

• The sum of k smallest diagonal entries in X is at least the sum of k smallest of λi’s
• If X � 0, then the product of the k smallest diagonal entries in X is at least the
product of the k smallest of λi’s. In particular, the product of all diagonal entries in X
is ≥ Det(X).
[g(x) = min

i1<i2<...<ik
[lnxi1 + ... + lnxik] is the sum of logs of k smallest entries in x > 0,

f(x) = −g(x)]

3.33

♣ For z ∈ Rm, let sk(z) be the sum of k largest entries in z.
• Majorization Principle: Let x ∈ Rm. A point y can be represented as πx with a
double stochastic matrix π if and only if

sk(y) ≤ sk(x), k < m, and sm(y) = sm(x)

Remark: For x, y ∈ Rm, the condition sk(y) ≤ sk(x), k ≤ m, is necessary and sufficient
for existence of double-stochastic matrix π such that y ≤ πx.
Corollary: SD-representability of symmetric SDr functions of eigenvalues. Let
f(x) be a SDr symmetric function on Rm. Then the function

F (X) = f(λ(X)) : Sm → R ∪ {+∞}
is SDr with SDR readily given by SDR of f . In particular, the following functions are
SDr with explicit SDR’s:
• −Detπ(X), X ∈ Sm+ (π ∈ (0, 1

m
] is rational);

• Det−π(X), X � 0 (π > 0 is rational);
• |X|π = ‖λ(X)‖π, X ∈ Sm (π ∈ [1,∞) is rational or π =∞).

3.34

Proof. Let t ≥ f(x)⇔ ∃u : A(t, x, u) � 0. Then

t ≥ F (X)⇔ t ≥ f(λ(X))⇔ ∃(y ∈ Rm, π ∈ Pm) :

y1 ≥ y2 ≥ ... ≥ ym
f(y) ≤ t
λ(X) = πy
[since f(πy) ≤ f(y)]

⇒ t ≥ F (X)⇔ ∃y ∈ Rm :

y1 ≥ y2 ≥ ... ≥ ym, f(y) ≤ t
sk(λ(X)) ≤ y1 + ...+ yk, k < m
sm(λ(X)) = y1 + ...+ ym
[by Majorization Principle]

⇒ t ≥ F (X)⇔ ∃(y ∈ Rm, u) :

y1 ≥ y2 ≥ ... ≥ ym, A(y, t, u) � 0
Sk(X) ≤ y1 + ...+ yk︸ ︷︷ ︸

SD-representable!

, k < m

Tr(X) = y1 + ...+ ym

3.35

Majorization Principle: Let x ∈ Rm. A point y can be represented as πx with a double
stochastic matrix π if and only if

sk(y) ≤ sk(x), k < m, and sm(y) = sm(x) (∗)
Proof, “only if” part: If y = πx with double stochastic π, then sk(y) ≤ sk(x) by
Corollary of the Birkhoff Theorem (sk(·) are convex symmetric functions!), and of course
sm(y) = sm(x).

3.36

Majorization Principle: Let x ∈ Rm. A point y can be represented as πx with a double
stochastic matrix π if and only if

sk(y) ≤ sk(x), k < m, and sm(y) = sm(x) (∗)
Proof, “if” part: Let x and y satisfy (∗); we should prove that y = πx for a double
stochastic matrix π. By “permutational symmetry” of the claim, we may assume that

x1 ≥ x2 ≥ .. ≥ xm, y1 ≥ y2 ≥ .. ≥ ym.
Let X be the set of all permutations of x; by Birkhoff Theorem, y = πx for certain
double stochastic π iff y ∈ Conv(X), thus all we should prove is that y ∈ Conv(X).
Assume that y 6∈ Conv(X). Then there exists e such that

eTy > max
x′∈X

eTx′. (∗∗)

Permuting the entries in e, we do not vary the right hand side in (∗∗). If ei < ej for a pair
i, j with i > j, then, swapping ei and ej, we do not decrease eTy (since y1 ≥ y2 ≥ ... ≥ ym).
Thus, we may assume that e in (∗) satisfies e1 ≥ e2 ≥ ... ≥ em. Then

eTy = e1y1 + e2y2 + ...+ emym
= em(y1 + ...+ ym) + (em−1 − em)(y1 + ...+ ym−1)

+(em−2 − em−1)(y1 + ...+ ym−2) + ...+ (e1 − e2)y1

= emsm(y) + (em−1 − em)︸ ︷︷ ︸
≥0

sm−1(y)

+ (em−2 − em−1)︸ ︷︷ ︸
≥0

sm−2(y) + ...+ (e1 − e2)︸ ︷︷ ︸
≥0

s1(y)

≤ emsm(x) + (em−1 − em)sm−1(x)
+(em−2 − em−1)sm−2(x) + ...+ (e1 − e2)s1(x) [by (∗)]

= eTx – contradicts (∗∗)!

3.37

Remark: For x, y ∈ Rm, the condition sk(y) ≤ sk(x), k ≤ m, is necessary and sufficient
for existence of double-stochastic matrix π such that y ≤ πx.
Proof: If part: The functions sk(·) clearly are monotone, so that when y ≤ πx with
double-stochastic π, we have sk(y) ≤ sk(πx), and the latter quantity, as we know, is
≤ sk(x).
Only if part: Let sk(y) ≤ sk(x), k ≤ m. Let xt be obtained from x by decreasing by t the
smallest entry in x and keeping the remaining entries intact. We have sk(xt) = sk(x),
k < m, and sm(xt) = sm(x)− t. Setting t = sm(x)− sm(y), we get sk(xt) ≥ sk(y), k < m,
and sm(xt) = sm(y). By Majorization principle, y = πxt for some double-stochastic
matrix π, and πxt ≤ πx since xt ≤ x ⇒ y ≤ πx.

3.38

• The function − m
√

Det(X) : Sm
+ → R is SDr.

This is a particular case of our general result on SD-representability of symmetric SDr
functions of eigenvalues as applied to the CQr function − m

√
x1...xm : Rm

+ → R.
Due to its importance in various volume-related problems, we present a “customized”
SDR for −Det1/m(X) which is shorter than the one given by our general theory:
Fact: The set X = {(X, t) : X ∈ Sm+, t ≤ Det1/m(X)} admits the SDR readily given by
the following representation:

X � 0, t ≤ Det1/m(X)⇔ ∃D, τ :

X � 0, D : lower triangular with nonnegative diagonal[

X D
DT τIm

]
� 0

τ ≤ (D11D22...Dmm)1/m︸ ︷︷ ︸
CQr

, t ≤ τ

3.39

Claim: The set X := {(X, t) : X ∈ Sm+, t ≤ Det1/m(X)} admits representation

X � 0, t ≤ Det1/m(X)⇔

(∃D, τ :

D : lower triangular with nonnegative diagonal (a)[

X D
DT τIm

]
� 0 (b)

τ ≤ (D11D22...Dmm)1/m (c)
t ≤ τ (d)

• In one direction: Let (X, t) ∈ X . When X � 0, let the lower triangular ∆ with
nonnegative diagonal be given by Choleski decomposition of X: X = ∆∆T , and let τ =
Det1/m(X). Setting D =

√
τ∆, we meet (b) (by Schur Complement Lemma), (a), and

(d) (since t ≤ Det1/m(X)). In addition, Det(X) = Det2(∆) ⇒ τ = (∆11∆22...∆mm)2/m

⇒ (D11D22...Dmm)1/m =
√
τ(∆11∆22...∆mm)1/m = τ , implying (c). We have augmented

(X, t) to a solution of (a-d). When X � 0 is singular, the required augmentation is given
by D = 0, τ = 0.
• In the opposite direction: Let X, t,D, τ solve (a-d). Then X � 0 by (b). If τ = 0,
then t ≤ 0 by (d), and thus t ≤ Det1/m(X). If τ > 0, then X � τ−1DDT by (b) and Schur
Complement Lemma ⇒Det(X) ≥ τ−mDet2(D) ⇒Det1/m(X) ≥ τ−1(D11D22...Dmm)2/m ≥
τ , with concluding inequality given by (c), ⇒ t ≤ Det1/m(X) by (d) ⇒ (X, t) ∈ X .

3.40

• Norm of rectangular matrix. Let X be a m× n matrix. Its spectral norm

‖X‖ = max
‖ξ‖2≤1

‖Xξ‖2

is SDr:

t ≥ ‖X‖ ⇔
[
tIn XT

X tIm

]
� 0.

3.41

♣ Summary on singular values. Let X be m× n matrix. Then
♠ There exists representation, called singular value decomposition,

X =
∑k

i=1
σi`ir

T
i ,

where
• k = Rank(X) = dim ImX = dim ImXT

• left singular vectors `1, ..., `k of X form an orthonormal basis in ImX, and right singular
vectors r1, ..., rk of X form an orthonormal basis in ImXT

• σi = σi(X), σ1 ≥ σ2 ≥ ... ≥ σk > 0 are the nonzero singular values of X.
Note: It is convenient to define σi(X) for i > k as well, namely, as zeros.
Equivalently: X = LDRT , where L and R are m ×m and n × n orthonormal matrices,
and D is m × n matrix with zero off-diagonal entries: Dij = 0, i 6= j, and k nonzero
diagonal entries Dii = σi, 1 ≤ i ≤ k.
♠ σi(X) = σi(XT), i ≤ k, are square roots of nonzero eigenvalues of XTX, same as of
nonzero eigenvalues of XXT , the eigenvalues being arranged in the non-ascending order
♠ The eigenvectors/eigenvalues of the symmetric (m+ n)× (m+ n) matrix

A(X) =

[
X

XT

]
are as follows:
• k eigenvectors [`i; ri] with eigenvalues σi, 1 ≤ i ≤ k
• m+ n− 2k eigenvectors forming orthonormal basis in

KerA(X) = {[u; v] : `Ti u = 0, i ≤ k, rTi v = 0, i ≤ k}
with zero eigenvalues
• k eigenvectors [`i;−ri] with eigenvalues −σi, i = k, k − 1, ...,1

3.42

• The sum of k ≤ min[m,n] largest singular values Σk(X) =
∑k

i=1σi(X) is a SDr
function of X ∈ Rm×n.
Indeed, the eigenvalues of linearly depending on X symmetric matrix

A(X) =

[
X

XT

]
are nonzero singular values of X, minus nonzero singular values of X, and perhaps a
number of zeros. As a result,

Σk(X) = Sk(A(X))

Since Sk is SDr and this property is preserved by affine substitution of argument, Σk is
SDr.

3.43

• SDR of symmetric monotone SDr function of singular values. Given positive
integers m,n, let k =
min[m,n], and let

f(λ) : Rk
+ → R ∪ {∞}

be a symmetric w.r.t. permutations of coordinates and ≥-nondecreasing SDr function.
Then the function

F (X) = f(σ1(X), ..., σk(X)) : Rm×n → R ∪ {∞}
is SDr:

t ≥ F (X)⇔ ∃z :

z1 ≥ z2 ≥ ... ≥ zk ≥ 0, f(z) ≤ t︸ ︷︷ ︸

SDr
z1 + ...+ zi ≥ Si

([
X

XT

])
︸ ︷︷ ︸

SDr

, i ≤ k

[recall that y ∈ Rk is ≤ πx for some double-stochastic π iff si(y) ≤ si(x) for i ≤ k]

3.44

Corollary: The Shatten norms – the functions

|X|π = ‖σ(X)‖π : Rm×n → R+

with rational π ∈ [1,∞) are SDr with explicit SDR’s.
Note: Nuclear norm |X|1 =

∑
i σi(X) is what is replacing `1-norm when passing from

recovering sparse vectors to recovering low rank matrices. A very popular problem of the
latter form is Matrix Completion: recovery of low rank matrix from noisy measurements
of part of entries of the matrix.

3.45

♠ Due to importance of nuclear norm, we present a “customized” SDR for |X|1; this
SDR is shorter than the one given by our general theory.
Fact: For m× n matrices X, one has

|X|1 ≤ t⇔ ∃P,Q :

[
P X
XT Q

]
� 0 & Tr(P) + Tr(Q) ≤ 2t

Indeed, given X, let X = UDV T be the svd of X. The matrices[
P X
XT Q

]
,

[
UTPU D
DT V TQV

]
=
[
UT

V T

] [
P X
XT Q

] [
U

V

]
are rotations of each other and therefore simultaneouly are/are not � 0, and Tr(P) =
Tr(UTPU), Tr(Q) = Tr(V TQV)
⇒ It suffices to verify that if D is m × n matrix with zeros outside of the diagonal and
with diagonal entries Dii = σi ≥ 0, 1 ≤ i ≤ k := min[m,n], then∑

i

σi ≤ t⇔ ∃P,Q :

[
P D
DT Q

]
︸ ︷︷ ︸

A

� 0 & Tr(P) + Tr(Q) ≤ 2t. (∗)

• In one direction: when
∑

i σi ≤ t, specifying P , Q as diagonal m × m, resp., n × n
matrices with σi, 1 ≤ i ≤ k, as the first k diagonal entries and zero remaining diagonal
entries, we ensure the validity of the right hand side requirements in (∗). �

• In the opposite direction: when P,Q, t satisfy the right hand side requirements in (∗), we

have σi ≤
√
PiiQii, 1 ≤ i ≤ k (look at principal 2×2 minors of A) ⇒

∑
i σi ≤

∑
i≤k
√
PiiQii ≤

1
2

∑
i≤k(Pii +Qii) ≤ 1

2
[Tr(P) + Tr(Q)] (since clearly P � 0, Q � 0) ⇒

∑
i≤k σi ≤ t. �

3.46

• “�-convex quadratic matrix function”

F (X) = (AXB)(AXB)T + CXD + (CXD)T + E[
F : Rp×q → Sm

]
(A,B,C,D,E = ET are constant matrices such that F (·) makes sense and takes its values
in Sm) is SDr in the sense that its “�graph”

Epi{F} = {(X,Y) ∈ Rp×q × Sm : F (X) � Y }
is an SDr set:

Y � F (X)

m [LSC][
Y − E − CXD − (CXD)T AXB

(AXB)T Ir

]
� 0 [B : q × r]

(by the Schur Complement Lemma).

3.47

• “�-convex fractional-quadratic function”. Let X be a rectangular p×q matrix, and
V be a positive definite symmetric q × q matrix. Consider the matrix-valued function

F (X,V) = XV −1XT : Rp×q × intSq+ → Sp

The closure of the “�graph” of F (X,V) – the set

G ≡ cl
{

(X,V, Y) ∈ Rp×q × intSq+ × Sp : F (X,V) � Y
}

is SDr:

G =

{
(X,V, Y) ∈ Rp×q × Sq × Sp |

[
Y X
XT V

]
� 0

}
.

(by the Schur Complement Lemma).

3.48

♠ Matrix square root. For X � 0, the matrix X1/2 is, by definition symmetric matrix
such that

X1/2 � 0 & [X1/2]2 = X.

It is known that these requirements uniquely define X1/2.
• X1/2 is readily given by eigenvalue decomposition of X � 0:

X = UDiag{λ1, ..., λm}UT ⇒ X1/2 = UDiag{
√
λ1, ...,

√
λm}UT [UTU = Im]

• Surprisingly, considered as a function of X � 0, X1/2 is �-monotone and �-concave:

0 � X � Y ⇒ 0 � X1/2 � Y 1/2 & {(X,Z) : X � 0, Z � X1/2} is convex set

3.49

• “�-hypograph of the matrix square root.” The sets

{(X,Y) ∈ Sm+ × Sm+ : X2 � Y }= {(X,Y) : X � 0,

[
Y X
X I

]
� 0}

and

{(X,Y) ∈ Sm+ × Sm+ : X � Y 1/2}= {(X,Y) : ∃Z : 0 � X � Z,
[
Y Z
Z I

]
� 0}

both are SDr. These sets are different:

0 � X,X2 � Y ⇒ X � Y 1/2, but 0 � X � Y 1/2 6⇒X2 � Y[
0 �

[
6 0
0 1

]
︸ ︷︷ ︸

X

�
[

12 8
8 12

]
︸ ︷︷ ︸

Y 1/2

, but Det
([

172 192
192 207

]
︸ ︷︷ ︸

Y−X2

)
= −1260 < 0!

]
Reason for “pathology”: When m ≥ 2, the mapping X 7→ X1/2 is �-monotone on Sm+,

while the mapping X 7→ X2 is not �-monotone on Sm+.

3.50

Sums-of-Squares

Situation: We are given real-valued functions φ0(x) ≡ 1, φ1(x), ..., φd(x) on some set X.
• These data specify the linear space Φ of functions φ(·) which can be represented as
linear combinations of φi(·) and their pairwise products
• Since φ0 ≡ 1, every function f(x) ∈ Φ can be represented as sum of pairwise products
of φi:

f(x) =
∑d

i,j=0
cijφi(x)φj(x)

and can be identified with its matrix of coefficients [cij] ∈ Sd+1

♠ Some functions f ∈ Φ are sums of squares:

f(x) =
∑
`

[∑d

i=0
a`iφi(x)

]2

Question: Can we recognize the matrices of coefficients of sums of squares?

Answer: Yes! The matrix of coefficients [cij] of a square
[∑d

i=0 ciφi(x)
]2

is dyadic:

cij = cicj,0 ≤ i, j ≤ d
⇒Matrices of coefficients of sums of squares are exactly the matrices from semidefinite
cone Sd+1

+ !
Why it matters: Sums of squares definitely are nonnegative on X, and we get a
verifiable sufficient condition for nonnegativity of f ∈ Φ:
If the matrix of coefficients of f ∈ Φ is positive semidefinite, then f(x) ≥ 0, x ∈ X.

3.51

Example: Nonnegativity of Univariate Polynomials

♠ In some cases the above sufficient condition for nonnegativity results in verifiable
necessary and sufficient conditions for nonnegativity of functions from Φ – explicit SDR’s
of their coefficients.
Examples:
• Univariate algebraic polynomial of degree ≤ 2d is nonnegative on the entire axis if and
only if it is sum of squares of polynomials of degree ≤ d
⇒Polynomial p(t) =

∑2d
`=0 p`t

` is nonnegative on the entire axis iff

p(t) ≡
d∑

i,j=0

cijt
itj for some [cij] � 0,

that is, iff

p` =
∑
i+j=`

cij, 0 ≤ ` ≤ 2d, with [cij]0≤i,j≤d � 0

• Similarly, there exist explicit SDR’s of the vectors of coefficients of
— univariate algebraic polynomials of degree ≤ d nonnegative on a given ray
— univariate algebraic polynomials of degree ≤ d nonnegative on a given segment
— univariate trigonometric polynomials nonnegative on a given segment
Why it matters: To minimize an algebraic polynomial p(t) =

∑d
`=0 p`t

` on a segment
∆ is the same as to ask what is the largest s such that the vector [p0− s; p1; ...; pd] is the
vector of coefficients of a nonnegative on ∆ polynomial. Given SDR of these vectors
of coefficients, finding mint∈∆ p(t) becomes an explicit semidefinite program.

3.52

• Why a nonnegative on the axis polynomial is a sum of squares?
Assume a polynomial

p(t) = a(t− s1)...(t− sn)

of certain degree n is nonnegative on the entire axis. Then
• the degree is even,
• the leading coefficient a is positive,
• all real roots, if any, are of even multiplicities.
If z, z∗ is a conjugate pair of complex roots, then the corresponding factor (t− z)(t− z∗)
in p is a sum of squares of a linear function and a real.
Thus, p is the product of sums of squares of polynomials, and such a product again is
a sum of squares of polynomials.
• In fact, our reasoning says that p is a product of factors which are sums of at most
two squares each. As a result, p itself is a sum of just two squares, due to the identity

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2.

3.53

♠ Bad news: For multivariate polynomials, being the sum of squares of other polyno-
mials (this is efficiently verifiable via SDP) is only sufficient, but not necessary, condition
for nonnegativity.

• This is a pity, since verification of nonnegativity of a multivariate polynomial of (total)
degree just 4 is a key to solving all difficult combinatorial problems.
Example: Checking feasibility of linear system Ax = b with rational coefficients in
Boolean variables x reduces to checking whether the polynomial∑

i

[xi(1− xi)]2 + ‖Ax− b‖2
2 − ε

with some ε > 0 readily given by the data A, b is not/is nonnegative .
Were we able to check nonnegativity efficiently, we would be able to answer this question
(and even solve the system efficiently, provided it is feasible).

3.54

Sums-of-Squares

Situation: We are given real-valued functions φ0(x) ≡ 1, φ1(x), ..., φd(x) on some set X.
These data specify the linear space Φ of functions φ(·) which can be represented as
linear combinations of φi(·) and their pairwise products, or, which is the same due to
φ0(·) ≡ 1, as linear combinations of the pairwise products φiφj:

Φ = {f(·) =
d∑

i,j=0

cijφi(·)φj(·)}

W.l.o.g. we can assume that cij = cji. Note that Φ is the image of Sd+1 under the linear
mapping

Sd+1 3 C = [cij]0≤i,j≤d 7→ A[C](·) =
∑
i,j

cijφi(·)φj(·)

3.55

Sd+1 3 C = [cij]0≤i,j≤d 7→ A[C](·) =
∑
i,j

cijφi(·)φj(·) & Φ = A[Sd+1]

Observation: Sums of squares of linear combinations of functions φ0, ..., φd are exactly
the elements of the image of the positive semidefinite cone Sd+1

+ under the mapping A.

Indeed,
[∑

i λiφi(·)
]2

= A[λλT], and the matrices from Sd+1
+ are nothing but sums of

dyadic matrices.
Corollary: The set of (arrays of coefficients of) algebraic polynomials which are sums
of squares of linear combinations of given algebraic polynomials φ0(·) ≡ 1, φ1(·), ..., φd(·)
on Rn is SDr.
Indeed, this set is the image of Sd+1

+ under linear mapping A[·].
Conclusion: A sufficient condition for a function f ∈ Φ to be nonnegative on X is the
possibility to find a C ∈ Sd+1 such that

A[C] = f & C � 0. (!)

When X = Rn and all φi are polynomials, (!) is a semidefinite feasibility problem.

3.56

Nonnegative polynomials

♣ For every positive integer k, the following sets are SDr:
— The set P+

2k(R) of coefficients of algebraic polynomials of degree ≤ 2k which are
nonnegative on the entire axis:

P+
2k =

{
p = (p0, ..., p2k)T : ∃Q = [Qij]ki,j=0 ∈ Sk+1

+ : p` =
∑

i+j=`

Qij, ` = 0,1, ...,2k

}
Equivalently: A polynomial p(t) of degree ≤ 2k is nonnegative on R iff it can be obtained
from Q ∈ Sk+1

+ according to

p(t) = [1; t; t2; ...; tk]TQ[1; t; t2; ...; tk]
— The set P+

k (R+) of coefficients of algebraic polynomials of degree ≤ k which are
nonnegative on the nonnegative ray R+

— The set P+
k ([0,1]) of coefficients of algebraic polynomials of degree ≤ k which are

nonnegative on the segment [0,1]
— The set T+

k (∆) of coefficients of trigonometric polynomials of degree ≤ k, p(φ) = p0+∑k
`=1

[
p`,c cos(`φ) + p`,s sin(`φ)

]
, which are nonnegative on a given segment ∆ ⊂ [−π, π].

♣ As a corollary, for every segment ∆ ⊂ R and every positive integer k, the function

f(p) = max
t∈∆

p(t)

of the vector p of coefficients of an algebraic (or a trigonometric) polynomial p(·) of
degree ≤ k is SDr.
Indeed, τ ≥ f(p) if and only if the polynomial qp,τ(t) = τ − p(t) of t is nonnegative on ∆,
and the coefficients of q are affine in τ and the coefficients of p.

3.57

• SDR of the cone P+
2k(R): Consider the linear mapping Π from the space Sk+1 to the

space of polynomials of degree ≤ 2k:

Π([aij]
k
i,j=0) =

∑k

i,j=0
aijt

i+j

Observation: The images of dyadic matrices aaT under the mapping Π are exactly
squares of polynomials of degree ≤ k:

Π(aaT) =
∑k

i,j=0
aiajt

i+j =

(∑k

i=0
ait

i

)2

.

• The positive semidefinite cone is exactly the set of sums of dyadic matrices. Therefore,
by Observation, the image of positive semidefinite cone under the mapping Π is exactly
the set of polynomials of degree ≤ 2k which are sums of squares. It remains to note
that A univariate polynomial is nonnegative on the entire axis iff it is sum of squares,
whence

P+
2k(R) = Π(Sk+1

+),

and thus P+
2k is SDr.

3.58

• SDR of P+
2k(R) induces all other SDRs we need, namely

— SDR of P+
k (R+) due to

p(t) ∈ P+
k (R+)⇔ π[p](t) ≡ p(t2) ∈ P+

2k(R),

— SDR of P+
k ([0,1]) due to

p(t) ∈ P+
k ([0,1])⇔ ψ[p](t) ≡ (1 + t2)kp

(
t2

1 + t2

)
∈ P+

2k(R)

— SDR of Tk(∆) due to

p(φ) ∈ Tk(∆)⇔ θ[p](t) ≡ (1 + t2)kp(2 atan(t)) ∈ P+
2k(∆̂),

∆̂ = {t = tan(φ/2), φ ∈∆}

and the coefficients of π[p], ψ[p], θ[p] are affine in the coefficients of p.

3.59

• Why a nonnegative on the axis polynomial is a sum of squares?
Assume a polynomial

p(t) = a(t− s1)...(t− sn)

of certain degree n is nonnegative on the entire axis. Then
• the degree is even,
• the leading coefficient a is positive,
• all real roots, if any, are of even multiplicities.
If z, z∗ is a conjugate pair of complex roots, then the corresponding factor (t− z)(t− z∗)
in p is a sum of squares of a linear function and a real.
Thus, p is the product of sums of squares of polynomials, and such a product again is
a sum of squares of polynomials.
• In fact, our reasoning says that p is a product of factors which are sums of at most
two squares each. As a result, p itself is a sum of just two squares, due to the identity

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2.

3.60

SDP models in Engineering

A. Dynamic Stability in Mechanics. The “free” (when no external forces are applied)
motions of linearly elastic mechanical systems (buildings, bridges, masts, etc.) are
governed by the Newton Law in the form:

M
d2

dt2
x(t) = −Ax(t) (NL)

where
• x(t) is the state of the system — block-vector of deviations of system’s “atoms” from
their equilibrium positions;
• M � 0 is the mass matrix;
• A � 0 is the stiffness matrix; 1

2
xTAx is the potential energy of the system at state x.

• It is easily seen that every solution to (NL) is linear combination of basic harmonic
oscillations (“modes”)

cos(ω`t)~f`, sin(ω`t)~f`

where the eigenfrequencies ω` are square roots of the eigenvalues λ(A : M) of the matrix
pencil [M,A], and f` are eigenvectors of the pencil.

3.61

ω = 2.646 ω = 2.955 ω = 4.382
Top: equilibrium position of spring triangle (3 unit masses linked by springs)

Bottom: “nontrivial” modes of the triangle (positions at 4 time instants)
There are 3 modes more with ω = 0 (coming from shifts and rotation)

• A typical Dynamic Stability specification is a lower bound on the eigenfrequencies:

λmin(A : M) ≥ λ∗,
which is the matrix inequality

A � λ∗M. (S)

• When A and M are affine in the design variables, (S) is an LMI!

3.62

B. Structural Design. Consider a linearly elastic mechanical system S with stiffness
matrix A � 0 loaded by an external load f (block-vector of external physical forces acting
at system’s “atoms”). Under the load, the system deforms until the tensions caused
by the deformation compensate the external forces. The corresponding equilibrium
displacement xf solves the equilibrium equation

Ax = f [⇒ xf = A−1f]

The compliance of S w.r.t. load f is the potential energy

Complf =
1

2
xTfAxf =

1

2
fTA−1f

stored in the system in the corresponding equilibrium. The compliance quantifies the
“rigidity” of S w.r.t. f : the less is the compliance, the better S withstands the load.

3.63

♣ In a typical Structural Design problem, we are given
• a stiffness matrix A = A(t) affinely depending on a vector t of design parameters,
• a collection f1, ..., fk of “loading scenarios”,
• a set T of allowed values of t
and are seeking for the design t ∈ T which results in the smallest possible worst-case,
w.r.t. the scenarios, compliance, thus arriving at the optimization problem

min
t∈T

max
`=1,...,k

1

2
fT` A

−1(t)f`.

3.64

min
t∈T

max
`=1,...,k

1

2
fT` A

−1(t)f`. (SD)

• When T is SDr, problem (SD) becomes the semidefinite program

min
t,τ

{
τ :

[
2τ fT`
f` A(t)

]
� 0, ` = 1, ..., k, t ∈ T

}

Data for Bridge Design problem [12 nodes, 51 tentative bars, 4-force load]

Optimal bridge (29 bars) Equilibrium displacement

3.65

C. Boyd’s Time Constant of an RC circuit. Consider a circuit comprised of (a)
resistors, (b) capacitors, and (c) resistors in serial connection with outer voltages:

O O

A B

VOA

σ

σ

C

AB

OA

BO

O

CAO

A simple circuit
Element OA: outer supply of voltage VOA and resistor with conductance σOA
Element AO: capacitor with capacitance CAO
Element AB: resistor with conductance σAB
Element BO: capacitor with capacitance CBO

♣ A chip is a complicated RC circuit where the outer voltages are switching, at certain
frequency, between several constant values. In order for chip to work reliably, the time of
transition to the steady-state corresponding to given outer voltages should be much less
than the time between switches of the voltages. How to model this crucial requirement?

3.66

• In an RC circuit, the transition period is governed by the Kirchhoff laws which result
in the dynamics

Cẇ = −Rw (H)

where
• w is the difference between the current state of the circuit and its steady state;
• C � 0 is given by circuit’s topology and the capacitances of the capacitors and is affine
in the capacitances;
• R � 0 is given by circuit’s topology and the conductances of the resistors and is affine
in the conductances.
The space of solutions to (H) is spanned by functions

w`(t) = exp{−λ`t}f`,
where λ` are the eigenvalues of the matrix pencil [C,R].
• λmin(R : C) can be viewed as the “decay rate” for (H): the “duration” of the transition
period is of order of λ−1

min(R : C).

S. Boyd has proposed to use λ−1
min(R : C) as a “time constant” for an RC circuit and to

model a lower bound on the speed of the circuit (≡ an upper bound on the duration of
the transition period) as a lower bound on λmin(R : C), i.e., as the matrix inequality

R � λ∗C. (B)

When R and C are affine in the design variables, (B) becomes an LMI, which allows to
pose numerous circuit design problems with bounds on the speed as SDPs.

3.67

SDP models in Engineering

D. Lyapunov Stability Analysis. Consider an uncertain time varying linear dynamical
system

ẋ(t) = A(t)x(t) (ULS)

where
• x(t) ∈ Rn is the state vector at time t

• A(t) takes values in a given uncertainty set U ⊂ Rn×n

♣ (ULS) is called stable, if all trajectories of the system converge to 0 as t→∞:

A(t) ∈ U ∀t ≥ 0, ẋ(t) = A(t)x(t)⇒ lim
t→∞

x(t) = 0.

How to certify stability?
• Standard sufficient stability condition is the existence of Lyapunov Stability Cer-
tificate – a matrix X � 0 such that the function L(x) = xTXx decreases exponentially
along the trajectories:

∃α > 0 : d
dt
L(x(t)) ≤ −αL(x(t)) for all trajectories[

⇒ L(x(t)) ≤ exp{−αt}L(x(0))⇒ x(t)→ 0, t→∞
]

For a time-invariant system, this condition is necessary and sufficient for stability.

3.68

♣ Question: When α > 0 is such that

d
dt
L(x(t)) ≤ −αL(x(t)) for all trajectories ẋ(t) = A(t)x(t), A(t) ∈ U ?

♣ Answer:
d
dt

(
xT(t)Xx(t)

)
= (ẋ(t))TXx(t) + xT(t)Xẋ(t)
= xT(t)AT(t)Xx(t) + xT(t)XAx(t)
= xT(t)

[
AT(t)X +XA(t)

]
x(t)

Thus,

d
dt
L(x(t)) ≤ −αL(x(t)) for all trajectories
⇔ xT(t)

[
AT(t)X +XA(t)

]
x(t) ≤ −αxT(t)Xx(t) for all trajectories

⇔ ATX +XA � −αX ∀A ∈ U
♣ Thus,

∃(α > 0, X � 0) : d
dt

(
xT(t)Xx(t)

)
≤ −α

(
xT(t)Xx(t)

)
for all trajectories

⇔ ∃(α > 0, X � 0) : ATX +XA � −αX ∀A ∈ U
⇔ ∃X : X � I, ATX +XA � −I ∀A ∈ U

3.69

• The existence of a Lyapunov Stability Certificate is equivalent to solvability of the
semi-infinite system of LMIs in matrix variable X:

X � I; ATX +XA � −I ∀(A ∈ U) (L)

• Every solution to (L) is a Lyapunov Stability Certificate for the uncertain dynamical
system

ẋ(t) = A(t)x(t) [A(t) ∈ U∀t]
• In some cases, the semi-infinite system of LMIs is equivalent to a usual system of
LMIs, so that search for a Lyapunov Stability Certificate reduces to solving an SDP.
Example 1: Polytopic uncertainty

U = Conv{A1, ..., AL}.
In this case (L) clearly is equivalent to the finite system of LMIs

X � I; AT` X +XA` � −I, ` = 1, ..., L.

3.70

Illustration: Why can we swing on a swing,
or

Parametric Resonance

♠ Free motion of swing with friction is ẍ = −αx− βẋ, or, which is the same,

ẋ = v
v̇ = −αx −βv ⇔

[
ẋ
v̇

]
=

[
0 1
−α −β

]
·
[
x
v

]
• x: deviation of swing from equilibrium • α > 0: elasticity • β > 0: friction

• This system is stable: all trajectories tend to 0 as t→∞.

Question: How can we swing on swing without external assistance and make oscilla-
tions larger and larger?
Answer: We do not sit in a fixed position: moving our body, we make the effective
length of the rope, and thus the elasticity α, periodic function of time. As a result,
time-invariant system becomes time-varying one and looses stability, provided the un-
certainty range is not too small.
♦ A smart policy of making swing unstable is
— to reduce elasticity as much as possible when moving away from equilibrium, when
elasticity slows us down
— to increase elasticity as much as possible when moving towards equilibrium, when
elasticity accelerates us
♠ The observed phenomenon – instability of uncertain dynamical system with all in-
stances certain – is called parametric resonance.

3.71

Numerical illustration: The nominal system is[
ẋ
v̇

]
=

[
0 1
−1 −0.2

]
·
[
x
v

]
• Assuming that the only uncertain element in the matrix of the system is the elasticity
(polytopic uncertainty!), Lyapunov Stability Analysis shows that the largest range of
elasticity around its nominal value −1 allowing for Lyapunov Stability Certificate is

{α : |α+ 1| ≤∆∗ = 0.198}.
This is what may happen with time-varying system:

-0.015 -0.01 -0.005 0 0.005 0.01 0.015
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

range of elasticity: |α+ 1| ≤ 0.9∆∗ range of elasticity: |α+ 1| ≤ 1.75∆∗

magnitude of oscillations goes to 0 as t→∞ magnitude of oscillations goes to ∞ as t→∞
Phase portraits [x(t); v(t)] of time-varying swing. o: starting point

3.72

• Example 2: Norm-bounded uncertainty

U =
{
A = A0 + P∆Q : ∆ ∈ Rp×q, ‖∆‖ ≤ 1

}
(NB)

• Illustration: Consider a controlled linear time-invariant dynamical system

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)
• x: state • u: control • y: observed output

“closed” by a feedback

u(t) = Ky(t).

y(t) = Cx(t)

x(t)

u(t) = K y(t)

x’(t) = Ax(t) + Bu(t)

x(t)

y(t) = Cx(t)x’(t) = Ax(t) + Bu(t)

y(t)u(t)u(t) y(t)

Open loop (left) and closed loop (right) systems

3.73

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)
u(t) = Ky(t)

• The resulting closed loop system is given by

ẋ(t) = Âx(t), Â = A+BKC (1)

Assuming that A, B, C are certain, and feedback matrix K is drifting around nominal
feedback K∗:

K = K∗ + ∆,

where ‖∆‖ does not exceed a given level, Â runs through uncertainty set of the form

U =
{
A = A0 + P∆Q : ∆ ∈ Rp×q, ‖∆‖ ≤ 1

}
(NB)

3.74

U =
{
A = A0 + P∆Q : ∆ ∈ Rp×q, ‖∆‖ ≤ 1

}
(NB)

Proposition. With the uncertainty set (NB), the Lyapunov Stability Certificate semi-
infinite system of LMIs

X � I; ATX +XA � −I ∀(A ∈ U) (L)

is equivalent to the LMIs

X � I,
[
−I −AT0X −XA0 − λQTQ −XP

−P TX λI

]
� 0

in variables X,λ.

3.75

• An instrumental role in the proof of Proposition is played by the following statement
which is extremely useful by its own right:
S-Lemma: Consider a homogeneous quadratic inequality

xTAx ≥ 0 (A)

which is strictly feasible: x̄TAx̄ > 0 for certain x̄.
A homogeneous quadratic inequality

xTBx ≥ 0 (B)

is a consequence of (A) iff it is a “linear” consequence of (A), i.e., iff (B) can be obtained
by summing up a nonnegative multiple of (A) and identically true homogeneous quadratic
inequality, or, which is the same, iff

∃(λ ≥ 0) : B � λA.
Comment: S-lemma says that (B) is consequence of (A) iff (B) is the sum of a non-
negative multiple of (A) and identically true homogeneous quadratic inequality:

{(A)⇒ (A)⇔ {∃λ ≥ 0, C : B = λA+ C & xTCx ≥ 0 ∀x}
• Compare with Homogeneous Farkas Lemma: Homogeneous linear inequality is a
consequence of a finite system of homogeneous linear inequalities iff the inequality is
the sum of nonnegative multiples of inequalities from the system:

{aTi x ≥ 0, i ≤ m⇒ bTx ≥ 0} ⇔ {∃λi ≥ 0 : b =
∑

i λiai}
Note: you can add to “of inequalities from the system” also and identically true homo-
geneous linear inequality — the only inequality of the latter type is 0Tx ≥ 0.

♠ When passing from homogeneous linear to homogeneous quadratic inequalities, “lit-
eral” extension of HFL fails to be true, unless there is just one inequality in the system
– the case covered by S-Lemma.

3.76

♠ S-Lemma admits inhomogeneous version:
Inhomogeneous S-Lemma: Consider a quadratic inequality

xTAx+ 2aTx+ α ≥ 0 (A)

which is strictly feasible: x̄TAx̄+ 2aT x̄+ α > 0 for certain x̄.
A quadratic inequality

xTBx+ 2bTx+ β ≥ 0 (B)

is a consequence of (A) iff the homogenized version

xTBx+ 2tbTx+ βt2 ≥ 0 (Bh)

of (B) is a consequence of the homogenized version

xTAx+ 2taTx+ αt2 ≥ 0 (Ah)

of (A), or, which is the same by Homogeneous S-Lemma, iff

∃(λ ≥ 0) :

[
B − λA b− λa
bT − λaT β − λα

]
� 0.

3.77

Proof of Proposition is given by the following fact:
(!) Assume that E 6= 0. Then

C +DT∆E + ET∆TD � 0 ∀(∆, ‖∆‖ ≤ 1)

⇔ ∃λ :

[
C − λETE DT

D λI

]
� 0

In particular, when Q 6= 0, one has

=[−I−AT
0X−XA0]+[−P TX]T∆Q+QT∆T [−P TX]︷ ︸︸ ︷

−I − [A0 + P∆Q]TX −X[A0 + P∆Q] � 0 ∀(∆, ‖∆‖ ≤ 1)

⇔ ∃λ :

[
−I −AT0X −XA0 − λQTQ −XP

−P TX λI

]
� 0

Proof of (!):

C +DT∆E + ET∆TD � 0 ∀(∆, ‖∆‖ ≤ 1)
⇔ ξTCξ + 2ξTDT [∆Eξ]︸ ︷︷ ︸

η

≥ 0 ∀ξ ∀(∆, ‖∆‖ ≤ 1)

⇔ ξTCξ + 2ξTDTη ≥ 0 ∀ξ ∀(η, ‖η‖2 ≤ ‖Eξ‖2)
⇔ ξTCξ + 2ξTDTη ≥ 0 ∀(ξ, η : ξTETEξ − ηTη ≥ 0)

⇔︸︷︷︸
[S-Lemma]

∃λ ≥ 0 :

[
C DT

D

]
� λ

[
ETE

−I

]

3.78

SDP approximations of computationally intractable problems

A. SDP relaxations in Combinatorics. In a typical combinatorial problem, we are
interested to minimize a “simple” function over a discrete set, e.g.
• Shortest Path: Given a graph with arcs assigned nonnegative integer lengths and
two nodes a, b, find the shortest path from a to b or detect that no path exists.
• Integer Linear Programming:

min
x

{
cTx : Ax ≤ b, x ∈ Zn

}
[Zn : n-dimensional integral vectors]

(all entries in A, b, c are integral)
• Boolean Programming:

min
x

{
cTx : Ax ≤ b, x ∈ Bn

}
[Bn : n-dimensional 0-1 vectors]

(all entries in A, b, c are integral)

3.79

• Knapsack problem:

max
x

{∑n

i=1
cixi :

∑n

i=1
aixi ≤ b, xi ∈ {0; 1}

}
(ci, ai, b are positive integers)
• “Stones”: Given n stones of positive integer weights a1, ..., an, check whether you can
partition them into two groups of equal weight, i.e., check whether the linear equation∑n

i=1
aixi = 0

has a solution with xi = ±1.

3.80

♣ As far as solution methods are concerned, the majority of generic combinatorial
problems
— are reducible to each other and are therefore of basically the same complexity
— are NP-complete – “as difficult as a problem can be”.
• In the above list the only “easy” – known to be efficiently solvable – problem is Shortest
Path, while all other problems are of basically the same “maximal possible” complexity.

3.81

• Most of solution methods for difficult combinatorial problems heavily use bounding.
Bounding techniques are aimed at building “efficiently computable” lower bounds for
the optimal value in combinatorial problem

min
x
{f(x) : x ∈ X} . (Ini)

A typical way to find such a bound is given by relaxation: we replace X with a larger
set X+ such that the problem

min
x

{
f(x) : x ∈ X+

}
(Rel)

is efficiently solvable, and use the optimal value of (Rel) as a lower bound on the optimal
value of (Ini):

X ⊂ X+ ⇒ Opt(Rel) ≤ Opt(Ini).

3.82

♣ Generic Example: Let (Ini) be quadratic quadratically constrained problem:

Opt = min
x

{
xTQ0x+ 2bT0x+ c0 :

fi(x) = xTQix+ 2bTi x+ ci ≤ 0, i = 1, ...,m
h`(x) = xTR`x+ 2dT` x+ e` = 0, ` = 1, ..., k

}
(Ini)

♠ Note: The scope of quadratic quadratically constrained problems is really huge:
• quadratic constraints allow to model discrete feasible sets:

x2
i = xi ⇔ xi is 0 or 1, x2

i = 1⇔ xi is 1 or -1

• problems with polynomial objective and constraints can be reduced to problems with
quadratic objective and constraints, since polynomial monomials can be expressed by
quadratic equalities and two-term products.
For example, given variables x, y, z, introducing variables xy, xyy, xyyz and subject them
to quadratic constraints

xy = x · y, xyy = xy · y, xyyz = xyy · z,
the monomial x2y2z becomes just the product x · xyyz.

3.83

♠ Let (Ini) be quadratic quadratically constrained problem:

Opt = min
x

{
xTQ0x+ 2bT0x+ c0 :

fi(x) = xTQix+ 2bTi x+ ci ≤ 0, i = 1, ...,m
h`(x) = xTR`x+ 2dT` x+ e` = 0, ` = 1, ..., k

}
(Ini)

X(x) = [x; 1][x; 1]T =

[
xxT x
xT 1

]
, Ai =

[
Qi bi
bTi ci

]
, 0 ≤ i ≤ m, B` =

[
R` d`
dT` e`

]
, 1 ≤ ` ≤ k,

we can write down (Ini) equivalently as

min
X

Tr(A0X) :
Tr(AiX) ≤ 0, i = 1, ...,m,
Tr(B`X) = 0, ` = 1, ..., k,
X ∈ X

 , X = {X = X(x) : x ∈ Rn}. (Med)

• Matrices of the form X(x) = [x; 1][x; 1]T with x ∈ Rn are exactly X ∈ Sn+1 satisfying
the constraints

(a) X � 0 (b) Xn+1,n+1 = 1 (c) Rank(X) = 1
(c) makes X difficult nonconvex set. Dropping (c) — extending X to the set

X+ =
{
X ∈ Sn+1 : X � 0, Xn+1,n+1 = 1

}
, [⊃ X]

the semidefinite program

OptRel = min
X

Tr(A0X) :
Tr(AiX) ≤ 0, i = 1, ...,m,
Tr(B`X) = 0, ` = 1, ..., k,
X � 0, Xn+1,n+1 = 1

 (Rel)

is a relaxation of (Ini).

3.84

♠ Another way to get the same relaxation is given by
Weak Lagrange Duality: Consider an optimization program

Opt = min
x

{
f0(x) :

fi(x) ≤ 0, i = 1, ...,m;
h`(x) = 0, ` = 1, ..., k.

}
(Ini)

Let

L(x;λ, µ) = f0(x) +
∑m

i=1
λifi(x) +

∑k

`=1
µ`h`(x) [λi ≥ 0]

be the Lagrange function of (Ini). We clearly have

λ ≥ 0, x feasible for (Ini)⇒ L(x;λ, µ) ≤ f0(x)

and therefore

λ ≥ 0⇒ F (λ, µ) ≡ inf
x∈Rn

L(x;λ, µ) ≤ Opt.

It follows that

OptLag ≡ sup
λ≥0,µ

F (λ, µ) ≤ Opt.

3.85

‘

(Ini) : Opt = min
x

{
f0(x) :

fi(x) ≤ 0, i = 1, ...,m;
h`(x) = 0, ` = 1, ..., k.

}
⇒ L(x;λ, µ) = f0(x) +

∑
iλifi(x) +

∑
`µ`h`(x)

⇒ F (λ, µ) = inf
x∈Rn

L(x;λ, µ)

⇒ OptLag ≡ sup
λ≥0,µ

F (λ, µ) ≤ Opt

• Shor’s bounding scheme: Assume that all functions f0, ..., fm, h0, ..., hk are quadratic:

fi(x) = xTQix+ 2bTi x+ ci, h` = xTR`x+ 2dT` x+ e`

and let us apply the Weak Duality:

L(x;λ, µ) = f0(x) +
∑

iλifi(x) +
∑

`µ`h`(x)
= xT [Q(λ, µ)]x+ 2[q(λ, µ)]Tx+ r(λ, µ)

Q(λ, µ) = Q0 +
∑

i≥1λiQi +
∑

`µ`R`,

q(λ, µ) = b0 +
∑

i≥1λibi +
∑

`µ`d`,

r(λ, µ) = c0 +
∑

i≥1λici +
∑

`µ`e`

What is infxL(x;λ, µ)?

3.86

L(x;λ, µ) = f0(x) +
∑

iλifi(x) +
∑

`µ`h`(x) = xT [Q(λ, µ)]x+ 2[q(λ, µ)]Tx+ r(λ, µ)
Q(λ, µ) = Q0 +

∑
i≥1
λiQi +

∑
`
µ`R`, q(λ, µ) = b0 +

∑
i≥1
λibi +

∑
`
µ`d`, r(λ, µ) = c0 +

∑
i≥1
λici +

∑
`
µ`e`

OptLag = maxλ≥0,µ {F (λ, µ) := infx{L(x;λ, µ}}

Lemma: A quadratic form xTQx + 2qTx + r is ≥ s for all x iff yTQy + 2tqTy + rt2 ≥ st2

for all y, t (plug x = y/t), that is, iff[
Q q
qT r − s

]
� 0.

By Lemma,

inf
x
L(x;λ, µ) = sup

{
s :

[
Q(λ, µ) q(λ, µ)
qT(λ, µ) r(λ, µ)− s

]
� 0

}
whence

OptLag = max
λ,µ,s

{
s :

[
Q(λ, µ) q(λ, µ)
qT(λ, µ) r(λ, µ)− s

]
� 0, λ ≥ 0

}
(Lag)

and this optimal value is a lower bound for

Opt = min
x

{
f0(x) :

fi(x) ≤ 0, i = 1, ...,m;
h`(x) = 0, ` = 1, ..., k.

}
[
fi(x) = xTQix+ 2bTi x+ ci, h` = xTR`x+ 2dT` x+ e`

]
3.87

Opt = min
x

{
f0(x) :

fi(x) ≤ 0, i = 1, ...,m;
h`(x) = 0, ` = 1, ..., k.

}
[
fi(x) = xTQix+ 2bTi x+ ci, h` = xTR`x+ 2dT` x+ e`

] (Ini)

The Semidefinite Relaxation and Shor’s Bounding yield, respectively, the lower bounds

OptRel = min
X

Tr(A0X) :
Tr(AiX) ≤ 0, i = 1, ...,m
Tr(B`X) = 0, ` = 1, .., k
X � 0, Xn+1,n+1 = 1

[
Ai =

[
Qi bTi
bi ci

]
, i = 1, ...,m, B` =

[
R` dT`
d` e`

]
, ` = 1, ..., k

] (Rel)

and

OptLag = max
λ,µ,s

{
s :

[
Q(λ, µ) q(λ, µ)
qT(λ, µ) r(λ, µ)− s

]
� 0, λ ≥ 0

}
, Q(λ, µ) = Q0 +

∑
i≥1λiQi +

∑
`µ`R`,

q(λ, µ) = b0 +
∑

i≥1λibi +
∑

`µ`d`,

r(λ, µ) = c0 +
∑

i≥1λici +
∑

`µ`e`

 (Lag)

on Opt.
• It is immediately seen that (Rel) is (equivalent to) the dual of (Lag), so that both
bounds are the same (provided that one of the relaxations is essentially strictly feasible)!

3.88

Example: Lovasz ϑ-function

• A graph is a finite set of nodes linked by arcs. A subset S of the nodal set is called
independent, if no pair of nodes from S are linked by an arc. The stability number α(Γ)
of a graph Γ is the maximum cardinality of independent sets of nodes. E.g., the stability
number of graph C5

B

C

D

E

A

Graph C5

is 2.
• To compute α(Γ) is an NP-complete combinatorial problem.

3.89

♠ Shannon capacity Θ(Γ) of a graph Γ is defined as follows. Imagine that the nodes
are letters of an alphabet. We can sent these letters through a communication channel.
When passing through the channel, a letter may be corrupted by noise; as a result, two
distinct letters on input to the channel may become the same on the output. We link
every pair of letters with this property by an arc, thus getting a graph.
♠ Assume we are sending k-letter words, one letter per unit time, and want to avoid
“misunderstandings” – the addressee should be capable to recognize which word was
sent, without risk that “no!” will be read as “yes”.
To avoid misunderstandings, we should restrict the “dictionary” of k-letter words we
actually use to be “independent” in the sense that no two distinct words from the
dictionary, when sent through the channel, can produce the same output. If we agree
with addressee what is the independent dictionary we use, no misunderstandings will
occur.

3.90

♠ In order to fully utilize the capacity of the channel, it makes sense to use a maximum
cardinality independent dictionary of k-letter words, let this cardinality be f(k). It is
clear that f1/k(k) is above bounded (e.g., by the number of letters) and that

f(k + l) ≥ f(k)f(l)

(think about (k + l)-letter words with the “k-letter prefix” from the independent dic-
tionary of cardinality f(k), and the ”l-letter suffix” from the independent dictionary of
cardinality f(l)). From these properties it follows that

sup
k≥1

f1/k(k) = lim
k→∞

f1/k(k) =: σ(Γ);

σ(Γ) is called Shannon capacity of graph Γ.
• Since the maximum cardinality of independent single-letter dictionaries is the stability
number of the graph, we have

α(Γ) = f(1) ≤ σ(Γ).

3.91

α(Γ) ≤ σ(Γ). (∗)
• Inequality (*) may be strict. E.g., α(C5) = 2:

B

C

D

E

A

Graph C5

3.92

At the same time, for C5 there exists independent dictionaries with 5 two-letter words,
e.g., {AA,BC,CE,DB,ED}

AA

AB

AC

AD

AE

BA
BBBC

BD

BE

CA

CB

CC

CD

CE

DA

DB

DC

DD DE
EA

EB

EC

ED

EE

Graph C5 × C5

Thus,

σ(C5) ≥
√
f(2) =

√
5.

The question whether this inequality is equality remained open for about 20 years!

3.93

• In early 70’s, L. Lovasz found a computable upper bound ϑ(Γ) for α(Γ) and proved
that

α(Γ) ≤ σ(Γ) ≤ ϑ(Γ)

(In particular,
√

5 ≤ σ(C5) ≤ ϑ(C5) =
√

5, whence σ(C5) =
√

5).
• By definition, ϑ(Γ) is the optimal value in the following semidefinite program:

min
X∈L

λmax(X) ≡ min
X∈L,µ

{µ : µI � X} (Lov)

where L is the set of all symmetric n × n matrices X (n is the number of nodes in the
graph) such that Xij = 1 when the nodes i, j are not adjacent.

3.94

B

C

D

E

A

Graph C5

Example: For graph C5, the set L is comprised of all matrices of the form
1 xAB 1 1 xEA
xAB 1 xBC 1 1

1 xBC 1 xCD 1
1 1 xCD 1 xDE
xEA 1 1 xDE 1

 .

3.95

• The Lovasz upper bound on α(Γ) can be obtained from Shor’s Bounding scheme.
Let the nodes of Γ be 1,...,n.
• Observe that α(Γ) is the optimal value in the Boolean quadratic program:

(a) max
x

∑n
i=1xi

(b) 2xixj = 0 ∀ adjacent i, j
(c) x2

i − xi = 0 ⇔ xi ∈ {0; 1}
(Stab)

• (c) associates with x the set of nodes {i : xi = 1};
• (b) says that the set {i : xi = 1} is independent;
• (a) counts the cardinality of {i : xi = 1}.
• Applying Shor’s scheme, we come to the “bounding program”

min
µ,ν,Y

µ :

[
Y + Diag{ν} −1

2
[ν + 1

¯
]

−1
2
[ν + 1

¯
]T µ

]
� 0

Yij = 0 ∀ non-adjacent i, j

 , 1
¯

=

 1
1
...
1

[Opt(Lag) ≥ α(Γ)]

(Lag)

3.96

‘

min
µ,ν,Y

µ :

[
Y + Diag{ν} −1

2
[ν + 1

¯
]

−1
2
[ν + 1

¯
]T µ

]
� 0

Yij = 0 ∀ non-adjacent i, j

 , 1
¯

=

 1
1
...
1

[Opt(Lag) ≥ α(Γ)]

(Lag)

• Applying Lemma on Schur Complement, we convert (Lag) to

min
µ≥0,ν,Y

{
µ :

µ(Y + Diag{ν}) � 1
4
(ν + 1

¯
)(ν + 1

¯
)T

Yij = 0 ∀ non-adjacent i, j

}
• Specifying ν-variables as ones, we can only increase the optimal value. The resulting
problem is

SDP = min
µ,Y

µ : µI �
X︷ ︸︸ ︷

−µY + 1
¯
· 1
¯
T

Yij = 0 ∀ non-adjacent i, j

[SDP ≥ α(Γ)]

•When Y runs through the set of symmetric matrices such that Yij = 0 for non-adjacent
i, j, X runs through the entire set of symmetric matrices with Xij = 1 for non-adjacent
i, j, so that

SDP = min
µ,X

{
µ :

µI � X
Xij = 1 ∀ non-adjacent i, j

}

3.97

♠ How close is ϑ(Γ) to α(Γ) ?
• There exists an important class of perfect graphs for which ϑ(Γ) = α(Γ)
• However, for general-type graphs it may happen that

ϑ(Γ)� α(Γ).

Lovasz have proved that if Γ is an n-node graph and Γ̂ is its complement (two distinct
nodes are linked by arc in Γ̂ iff they are not linked by arc in Γ), then

ϑ(Γ)ϑ(Γ̂) ≥ n⇒ max
[
ϑ(Γ), ϑ(Γ̂)

]
≥
√
n.

On the other hand, for a random n-node graph Γ (probability for a pair i < j to be
linked by an arc is 1

2
) it holds

max
[
α(Γ), α(Γ̂)

]
≤ O(lnn)

with probability approaching 1 as n→∞.
Thus, for “typical” random graphs

ϑ(Γ)

α(Γ)
≥ O

(√
n

lnn

)
.

3.98

B. Theorem of Goemans and Williamson. There exist hard combinatorial problems
where bounds coming from semidefinite relaxations coincide with the actual optimal
value within absolute constant factor. The most famous example is given by the MAX-
CUT problem which is as follows:

Given a graph Γ with arcs assigned nonnegative weights aij,
find a cut of maximal weight

.

[A cut in a graph is partitioning (S, S′) of the set of nodes into two non-overlapping
subsets. The weight of a cut is the sum of weights of all arcs linking a node from S
with a node from S′].

3.99

♠ MAXCUT is an NP-complete combinatorial problem which can be posed as quadratic
program with variables ±1:
• We lose nothing by assuming that graph is complete (set aij = 0 for pairs i, j of nodes
which in fact are not adjacent). Thus, assume that aij form a symmetric n × n matrix
A with nonnegative entries and zero diagonal.
• A cut (S, S′) can be represented by vector x ∈ Rn with xi = −1 for i ∈ S and xi = 1
for i ∈ S′. With this representation, the weight of the cut is

1

4

∑
i,j
aij(1− xixj) (∗)

• Thus, MAXCUT is the program

OPT = max
x

{
1

4

∑
i,j
aij(1− xixj) : x2

i = 1 ∀i
}
. (MAXCUT)

• Applying the Semidefinite Relaxation scheme, we get an SDP relaxation of MAXCUT
as follows:

SDP = max
X

{
1

4

∑
i,j
aij(1−Xij) : X � 0, Xii = 1, i ≤ n

}
. (SDP)

3.100

OPT = max
x

{
1
4

∑
i,jaij(1− xixj) : x2

i = 1, i ≤ n
}

(MAXCUT)

SDP = max
X

{
1
4

∑
i,jaij(1−Xij) : X � 0, Xii = 1, i ≤ n

}
(SDP)

Theorem [Goemans & Williamson, 1995]

OPT ≤ SDP ≤ α ·OPT, α = 1.138...

Proof. The left inequality is evident. Let X∗ be optimal for (SDP), let ξ ∼ N (0, X∗)
and let ζ = sign[ξ]. Then

[OPT ≥] E
{

1
4

∑
i,jaij(1− ζiζj)

}
= 1

4

∑
i,jaij(1− 2

π
asin(X∗ij)) [computation]

≥ 1
4
α−1

∑
i,jaij(1−X∗ij)

[due to aij ≥ 0 and (1− 2
π
asin(t)) ≥ α−1(1− t), −1 ≤ t ≤ 1]

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

= α−1 · SDP.
Thus, SDP ≤ α ·OPT. �

3.101

Note: We can rewrite equivalently the MAXCUT quadratic problem

OPT = max
x

{
1

4

∑
i,j
aij(1− xixj) : x2

i = 1 ∀i
}
.

as

OPT = max
x

{
1
4

∑
i,jaij(x

2
i − xixj) : x2

i = 1 ∀i
}

= max
x

{
xTQx : x2

i = 1 ∀i
}
, (Cmb)

Qij = 1
4

{ ∑
p aip, i = j

−aij i 6= j

The SDP relaxation of (Cmb) is equivalent to the original SDP relaxation of MAXCUT
and reads

SDP = max
X
{Tr(QX) : X � 0, Xii = 1, i ≤ n} (SDP)

Note: Q stemming from MAXCUT is diagonal-dominated matrix and as such is positive
semidefinite. It, however, is a very special positive semidefinite matrix: row sums are
zero, and off-diagonal entries are nonpositive.

3.102

OPT = max
x

{
xTQx : x2

i = 1, i ≤ n
}

(Cmb)

SDP = max
X
{Tr(QX) : X � 0, Xii = 1, i ≤ n} (SDP)

Question: What happens when passing from (Cmb) with the only restriction Q � 0 on
Q to the semidefinite relaxation (SDP) of (Cmb)? How tight is the relaxation now?
C. Nesterov’s π

2
Theorem. When Q � 0, one has

OPT ≤ SDP ≤
π

2
·OPT.

3.103

SDP = max
X
{Tr(QX) : X � 0, Xii = 1, i ≤ n} (SDP)

OPT = max
x

{
Tr(QxxT) : x2

i = 1, i ≤ n
}

(QP)

Claim: OPT ≤ π
2
SDP

Proof. Let X∗ be an optimal solution to (SDP), let ξ ∼ N (0, X∗) and let ζ = sign[ξ].
Then

[OPT ≥] E
{
ζTQζ

}
= Tr(Q

2

π
[asin(X∗ij)]i,j︸ ︷︷ ︸

asin[X∗]

) (1)

Lemma: Let X � 0 and |Xij| ≤ 1. Then asin[X] � X.
Proof: Denoting [X]k = [Xk

ij]i,j and taking into account that X � 0 ⇒ [X]k � 0,
k = 1,2, ..., one has

asin[X]−X =
∑∞

k=1

1× 3× 5× ...× (2k − 1)

2kk!(2k + 1)
[X]2k+1 � 0 �

By Lemma and since Q � 0, the right hand side in (1) is ≥ 2
π
Tr(QX∗) = 2

π
SDP , whence

SDP ≤ π
2
OPT. �

3.104

• We have used the following
Fact: If X = [xij]i,j≤n, Y = [yij]i,j≤n are positive semidefinite matrices of the same order,
then the entrywise product of X and Y – the matrix

X • Y = [xijyij]i,j≤n

is positive semidefinite as well.
Indeed, symmetric matrix Q is � 0 iff Q = F TF for some rectangular matrix F , or, which
is the same, iff Q is a Gram matrix:

Qij = fTi fj

for some fi ∈ RN (treat fi as the columns of F). And entrywise product of Gram
matrices again is a Gram matrix:

xij = fTi fj, yij = gTi gj ⇒ xijyij = VecT(fig
T
i)Vec(fjg

T
j) �

3.105

What has happened?

♠ In nearly all known to us examples “tightness” of semidefinite relaxation is derived
from considerations as follows:
• We start with quadratic quadratically constrained problem

Opt = min
x∈Rn

{
xTQ0x+ 2bT0x+ c0 :

fi(x) = xTQix+ 2bTi x+ ci ≤ 0, i = 1, ...,m
h`(x) = xTR`x+ 2dT` x+ e` = 0, ` = 1, ..., k

}
and look for its randomized solutions x which satisfy the constraints at average and
minimize under these restrictions the expected value of the objective.
• The expected value of a quadratic function f(x) = xTQx+ 2bTx+ c of random vector
x is fully specified by the moment matrix

X = Ex

{[
xxT x
xT 1

]
︸ ︷︷ ︸

[x;1][x;1]T

}
,

of x. Indeed, Ex{f(x)} = Tr
([

Q b
bT c

]
X
)
.

• It is easily seen that the only restrictions on a matrix X ∈ Sn+1 to be the moment
matrix of a random vector x ∈ Rn are X � 0 & Xn+1,n+1 = 1

3.106

Opt = min
x

{
xTQ0x+ 2bT0x+ c0 :

fi(x) = xTQix+ 2bTi x+ ci ≤ 0, i = 1, ...,m
h`(x) = xTR`x+ 2dT` x+ e` = 0, ` = 1, ..., k

}
Ex{xTQx+ 2bTx+ c} = Tr

([
Q b
bT c

]
X

)
, X = Ex{[x; 1][x; 1]T}

⇒The ”randomized” version of the problem of interest reads

min
X

Tr(A0X) :
Tr(AiX) ≤ 0, 1 ≤ i ≤ m
Tr(B`X) = 0, ` ≤ k
X � 0, Xn+1,n+1 = 1

[
Ai =

[
Qi bi
bTi ci

]
, B` =

[
R` d`
dT` e`

]]
which is exactly the semidefinite relaxation of the problem of interest.
The advantage of this interpretation is that it allows to pass from optimal solution
X∗ to the relaxation to a sample x1, x2,...,xN of realizations of the associated random
“solution” to the problem of interest. In good cases, we can “correct” xs to become
feasible for the problem of interest and can look how much the correction costs us in
terms of the objective.
For example: In MAXCUT and in Nesterov’s π

2
Theorem we sample xs from N (0, X∗)

and correct xs by passing from xi to sign[xs].

3.107

♣ The π
2

Theorem admits important corollaries:

Corollary 1 [Nesterov ’97] Let T ⊂ Rn
+ be a nonempty SDr compact set, and let Q be

an n× n symmetric matrix. Then the quantities

m∗(Q) = min
x

{
xTQx : (x2

1, ..., x
2
n)T ∈ T

}
,

m∗(Q) = max
x

{
xTQx : (x2

1, ..., x
2
n)T ∈ T

}
admit efficiently computable, via SDP, bounds

s∗(Q) ≡ min
X

{
Tr(QX) : X � 0, (X11, ..., Xnn)T ∈ T

}
,

s∗(Q) ≡ max
X

{
Tr(QX) : X � 0, (X11, ..., Xnn)T ∈ T

}
such that

s∗(Q) ≤ m∗(Q) ≤ m∗(Q) ≤ s∗(Q)

and

m∗(Q)−m∗(Q) ≤ s∗(Q)− s∗(Q) ≤
π

4− π
(m∗(Q)−m∗(Q))

Thus, one can bound from above the variation m∗(Q) −m∗(Q) by the efficiently com-
putable quantity s∗(Q) − s∗(Q), and this bound is tight within the absolute constant
factor π

4−π.

3.108

Corollary 2 [Nesterov ’97] Let p ∈ [2,∞], r ∈ [1,2], and let A be an m × n matrix.
Consider the problem of computing the operator norm ‖A‖p,r of the linear mapping
x 7→ Ax, considered as the mapping from the space Rn equipped with the norm ‖ · ‖p to
the space Rm equipped with the norm ‖ · ‖r:

‖A‖p,r = max {‖Ax‖r : ‖x‖p ≤ 1} ;

(it is NP-hard to compute this norm, except for the case of p = r = 2).
The “computationally intractable” quantity ‖A‖p,r admits an efficiently computable up-
per bound

ωp,r(A) = min
λ∈Rm,µ∈Rn

{
1
2

[
‖µ‖ p

p−2
+ ‖λ‖ r

2−r

]
:

[
Diag{µ} AT

A Diag{λ}

]
� 0

}
.

This bound is exact for a nonnegative matrix A, and for an arbitrary A the bound is
tight within the factor π

2
√

3−2π/3
= 2.293...:

‖A‖p,r ≤ ωp,r(A) ≤
π

2
√

3− 2π/3
‖A‖p,r.

Moreover, if p ∈ [1,∞] and r ∈ [1,2] are rational, the bound ωp,r(A) is an SDr function
of A.

3.109

D. Semidefinite Relaxation on Ellitopes
♠ A basic ellitope is a set X ⊂ Rn represented as

X = {x : ∃t ∈ T : xTSkx ≤ tk, 1 ≤ k ≤ K}
• Sk � 0, k ≤ K,

∑
k Sk � 0

• T : convex compact set in RK
+ containing a positive

vector and monotone: 0 ≤ t′ ≤ t ∈ T ⇒ t′ ∈ T
♠ An ellitope Y is a set represented as a linear image of basic ellitope:

Y = {y : ∃(t ∈ T , x) : y = Px, xTSkx ≤ tk, k ≤ K}.
Examples: A. Bounded intersection X of K centered at the origin ellipsoids/elliptic
cylinders {x : xTSkx ≤ 1} [Sk � 0] is a basic ellitope:

X = {x : ∃t ∈ T := [0,1]K : xTSkx ≤ tk, k ≤ K}
B. ‖ · ‖p-ball in Rn with p ∈ [2,∞] is a basic ellitope:

{x ∈ Rn : ‖x‖p ≤ 1} = {x : ∃t ∈ T = {t ∈ Rn
+, ‖t‖p/2 ≤ 1} : x2

k︸︷︷︸
xTSkx

≤ tk, k ≤ K}.

3.110

♣ Fact: Ellitopes admit fully algorithmic ”calculus:” this family is closed with respect
to basic operations preserving convexity and symmetry w.r.t. the origin, like taking

• finite intersections,
• linear images,
• inverse images under linear embeddings,
• direct products,
• arithmetic sums.

• What is missing, is taking convex hulls of finite unions.

3.111

♣ Fact: When maximizing a quadratic form yTCy over an ellitope

Y = PX , X = {x : ∃t ∈ T : xTSkx ≤ tk, k ≤ K}
semidefinite relaxation works reasonably well.
This is how it works:

• Passing from the quadratic form yTCy to the “lifted” form xT

D︷ ︸︸ ︷
[P TCP]x, we reduce the

situation to maximizing quadratic form xTDx over the basic ellitope X .
• For λ ∈ RK, let φT (λ) = max

t∈T
tTλ be the support function of T . When λ ≥ 0 is such

that D �
∑

k λkSk, and x ∈ X , there exists t ∈ T such that xTSkx ≤ tk, k ≤ K,
⇒ xTDx ≤ xT

[∑
kλkSk

]
x ≤

∑
k λktk ≤ φT (λ)

⇒ max
x∈X

xTDx ≤ Opt := min
{
φT (λ) : λ ≥ 0, D �

∑
k λkSk

}
Theorem One has

max
x∈X

xTDx ≤ Opt ≤ 3 ln(
√

3K)max
x∈X

xTDx

3.112

Opt := min
{
φT (λ) : λ ≥ 0, D �

∑
k λkSk

} [
φT (λ) = maxt∈T λT t

]
Fact: max

x∈X
xTDx ≤ Opt ≤ 3 ln(

√
3K) max

x∈X
xTDx

Note:
• When T is SDr with essentially strictly feasible SDR, the support function φT (·) of T
is SDr by Calculus of CQRs/SDRs

⇒ computing Opt reduces to SDP
• O(ln(K)) (not O(1)!) tightness factor correctly expresses the actual quality of SDP
relaxation when maximizing quadratic forms over ellitopes.

3.113

Opt := min
{
φT (λ) : λ ≥ 0, D �

∑
k λkSk

}
(∗)

≥ Opt∗ := maxz,t
{
zTDz : t ∈ T , zTSkz ≤ tk, k ≤ K

}
φT (λ) maxt∈T λT t

Claim: Opt ≤ 3 ln(
√

3K)Opt∗
Sketch of the Proof

Step 1. Rewriting (∗) in conic form. Let T = cl{[t; τ] : τ > 0, t/τ ∈ T } be the closed
conic hull of T . Since T is a convex compact set with a nonempty interior, T is a regular
cone, and

T = {t : [t; 1] ∈ T}.
It is immediately seen (check!) that

T∗ = {[g; s] : s ≥ φT (−g)}
⇒ (∗) is the conic problem

Opt = minλ,τ
{
τ : λ ≥ 0, [−λ; τ] ∈ T∗, D �

∑
k λkSk

}
As is easily seen, the problem is strictly feasible and bounded, so that the dual problem
is solvable with optimal value Opt:

Opt = maxX,t {Tr(DX) : X � 0, t ∈ T ,Tr(XSk) ≤ tk, k ≤ K} .

3.114

.

Opt = maxX,t {Tr(DX) : X � 0, t ∈ T ,Tr(XSk) ≤ tk, k ≤ K} (!)

Step 2: ”derandomization. Let X∗, t∗ be an optimal solution to (∗). Let

D̃ = X
1/2
∗ DX

1/2
∗ = UDiag{µ}UT [U is orthogonal]

S̃k = UTX
1/2
∗ SkX

1/2
∗ U

⇒ 0 � S̃k, Tr(S̃k) = Tr(X1/2
∗ SkX

1/2
∗) = Tr(SkX∗) ≤ t∗k.

Let ζ be Rademacher random vector (independent entries taking values ±1 with prob-
ability 1/2), and let

ξ = X
1/2
∗ Uζ.

Note:
E{ξξT} = E{X1/2

∗ UζζTUTX
1/2
∗ } = X∗ (a)

ξTDξ = ζTUTX
1/2
∗ DX

1/2
∗ Uζ = ζTUT D̃Uζ

= ζTDiag{µ}ζ =
∑

i µi = Tr(D̃) = Tr(DX∗) = Opt (b)

ξTSkξ = ζTUTX
1/2
∗ SkX

1/2
∗ Uζ = ζT S̃kζ (c)

3.115

ζ: Rademacher random vector, ξ = X
1/2
∗ Uζ, and

E{ξξT} = E{X1/2
∗ UζζTUTX

1/2
∗ } = X∗ (a)

ξTDξ = ζTUTX
1/2
∗ DX

1/2
∗ Uζ = ζTUT D̃Uζ

= ζTDiag{µ}ζ =
∑

i µi = Tr(D̃) = Tr(DX∗) = Opt (b)

ξTSkξ = ζTUTX
1/2
∗ SkX

1/2
∗ Uζ = ζT S̃kζ (c)

Tr(S̃k) ≤ t∗k & S̃k � 0 (d)
Observe that
A: for k with t∗k = 0 we have S̃k = 0 by (d) ⇒ ξTSkξ ≡ 0 by (c) ⇒

Prob{ξTSkξ > 3γt∗k} ≤
√

3 exp{−γ} ∀γ ≥ 0

B: for k with t∗k > 0 we have Tr(S̃k/t∗k) ≤ 1, whence

E
{

exp
{
ξTSkξ

3t∗k

}}
=︸︷︷︸
(c)

E
{

exp
{
ζT S̃kζ

3t∗k

}}
≤︸︷︷︸
(!)

√
3⇒

Prob{ξTSkξ > 3t∗kγ} ≤
√

3 exp{−γ} ∀γ ≥ 0
where (!) is due to

Lemma: Let Q be positive semidefinite N ×N matrix with trace ≤ 1 and ζ be
N-dimensional Rademacher random vector. Then E

{
exp

{
ζTQζ/3

}}
≤
√

3.

applied to Q = S̃k/t
∗
k with Tr(Q) ≤ 1 by (d).

3.116

.

We have built random vector ξ with discrete distribution such that
ξTDξ ≡ Opt (e)
Prob

{
ξTSkξ > 3t∗kγ

}
≤
√

3 exp{−γ} ∀k ∀γ > 0 (f)

By (f) Prob{∃k : ξTSkξ > 3 ln(
√

3K)t∗k} < 1

⇒ exists realization ξ of ξ such that ξ
T
Skξ ≤ 3 ln(

√
3K)t∗k, k ≤ K, while ξ

T
Dξ = Opt by

(e)

⇒ setting z = ξ/
√

3 ln(
√

3K), we get
zTSkz ≤ t∗k, k ≤ K︸ ︷︷ ︸

⇒zTDz≤Opt∗

& zTDz = Opt/[3 ln(
√

3K)]

⇒Opt∗ ≥ Opt/[3 ln(
√

3K), Q.E.D.

3.117

Lemma: Let Q be positive semidefinite N × N matrix with trace ≤ 1 and ζ be N-
dimensional Rademacher random vector. Then

E
{

exp
{
ζTQζ/3

}}
≤
√

3.

Proof of Lemma: Let Q obey the premise of Lemma, and let Q =
∑

i σifif
T
i be the

eigenvalue decomposition of Q, so that fTi fi = 1, σi ≥ 0, and
∑

i σi ≤ 1. The function

f(σ1, ..., σN) = E
{

e
1

3

∑
i
σiζTfif Ti ζ

}
is convex on the simplex {σ ≥ 0,

∑
i σi ≤ 1} and thus attains it maximum over the simplex

at a vertex
⇒ for some f with fTf = 1 it holds

E{e
1

3
ζTQζ} ≤ E{e

1

3
(f Tζ)2}.

Let ξ ∼ N (0,1) be independent of ζ. We have

Eζ

{
exp{1

3
(fTζ)2}

}
= Eζ

{
Eξ

{
exp{[

√
2/3fTζ]ξ}

}}
= Eξ

{
Eζ

{
exp{[

√
2/3fTζ]ξ}

}}
= Eξ

{
N∏
j=1

Eζ

{
exp{

√
2/3ξfjζj}

}}

= Eξ

{
N∏
j=1

cosh(
√

2/3ξfj)

}
≤ Eξ

{
N∏
j=1

exp{ξ2f2
j /3}

}
= Eξ

{
exp{ξ2/3}

}
=
√

3

�

3.118

Application: Near-Optimal Linear Estimation

♣ Consider the following basic statistical problem: Given noisy observation

ω = Ax+ ξ [A : m× n; ξ ∼ N (0, Im)]

of unknown signal x known to belong to a given “signal set” X , recover the linear image
Bx ∈ Rν of x.
♠ Major challenge: Our abilities to recover signal depend on the interplay between
three geometries, those of
— signal set X
— sensing matrix A
— matrix B and norm ‖ · ‖.
Specifically,
• when some of singular values of A are small, multiplication of signal by A suppresses
some components of the signal. As a result, when recovering these components from
observations, significant amplification of noise is unavoidable. E.g., when A = Diag{λi},
unbiased recovery x̂ = A−1ω amplifies noise components in recovery of xi’s corresponding
to small λi’s
• at the same time, “difficult to recover” components of x perhaps do not need recovery
at all – they might be small due to the geometry of X and/or their contribution to Bx
can be small due to the geometry of B.
♠ In “simple geometry” case, e.g., when A and B are diagonal, and X is ellipsoid like
{x :

∑
i x

2
i /σ

2
i ≤ 1}, the above interplay admits “closed form analysitcal analysis.” In the

general case, such analysis is completely out of question.

3.119

Given noisy observation

ω = Ax+ ξ [A : m× n; ξ ∼ N (0, Im)]

of unknown signal x known to belong to a given “signal set” X , recover the linear image
Bx ∈ Rν of x.
♠ The performance of a candidate estimate x̂(·) is quantified by risk

Risk[x̂|X] = supx∈X Eξ {‖x̂(Ax+ ξ)−Bx‖} .
[‖ · ‖ : a given norm on Rν]

♠ Assuming X symmetric w.r.t. the origin, the simplest estimates are linear ones:
x̂(ω) = x̂H(ω) := HTω. In this case Bx− x̂H(ω) = Bx−HT(Ax+ ξ) = [B −HTA]x−HTξ
⇒The risk of a linear estimate can be tightly, within factor 2, upper-bounded as

Risk[x̂|X] ≤ Risk[x̂|X] := max
x∈X
‖[B −HTA]x‖︸ ︷︷ ︸

“bias”

+ E{‖HTξ‖}︸ ︷︷ ︸
stochastic

term

.

⇒The minimum (within factor 2) risk linear estimate is given by an optimal solution to
the convex optimization problem

Opt∗ = min
H
{Φ(H) + Ψ(H)} ,Φ(H) := max

x∈X
‖[B −HTA]x‖, Ψ(H) = Eξ∼N (0,I){‖HTξ‖}

♠ Difficulty: Φ and Ψ, while convex, are, in general, difficult to compute. The only
generic cases when computing Φ is easy are those when X is an ellipsoid, or the convex
hull of a finite set of moderate cardinality.
♠ Proposed remedy: Replace Φ and Ψ with their efficiently computable upper bounds.

3.120

♣ From now on, we make the following assumptions
A. the signal set X is a basic ellitope:

X = {x : ∃t ∈ T : xTSkx ≤ tk, k ≤ K}
B. the unit ball B∗ of the norm ‖ · ‖∗ conjugate to ‖ · ‖ is an ellitope:
B∗ = {u : ‖u‖∗ := max

‖v‖≤1
vTu︸ ︷︷ ︸

⇔‖v‖=max
‖u‖∗≤1

uTv

≤ 1} = {u : ∃z ∈ Z : u = Mz}, Z = {z : ∃r ∈ R : zTR`z ≤ r`, ` ≤ L}

as is the case, e.g., when ‖ · ‖ = ‖ · ‖p with 1 ≤ p ≤ 2.
• T , Sk,R, R`: as required by the definition of an ellitope.

♣ Upper-bounding Φ:
Φ(H) = max

x∈X
‖[B −HTA]x‖ = max

u∈B∗,x∈X
uT [B −HTA]x = max

z∈Z,x∈X
zT [MT [B −HTA]]x

= max
[z;x]∈Z×X

[z;x]T
[

1
2
MT [B −HTA]

1
2
[BT −ATH]M

]
[z;x]

By Semidefinite Relaxation as applied on the ellitope Z × X

Φ(H) ≤ Φ(H) := min
λ,µ

φT (λ) + φR(µ) :
λ ≥ 0, µ ≥ 0[∑

` µ`R`
1
2
MT [B −HTA]

1
2
[BT −ATH]M

∑
k λkSk

]
� 0

• φU(w) = maxu∈U wTu: the support function of set U

• Note: The upper bound Φ on Φ is tight within the factor 3 ln(
√

3(K + L)).

3.121

A. the signal set X is a basic ellitope:

X = {x : ∃t ∈ T : xTSkx ≤ tk, k ≤ K}
B. the unit ball B∗ of the norm ‖ · ‖∗ conjugate to ‖ · ‖ is an ellitope:

B∗ = {u : ‖u‖∗ := max
‖v‖≤1

vTu︸ ︷︷ ︸
⇔‖v‖= max

‖u‖∗≤1

uTv

≤ 1} = {u : ∃z ∈ Z : u = Mz}, Z = {z : ∃r ∈ R : zTR`z ≤ r`, ` ≤ L}

♣ Upper-bounding Ψ(H) := E{‖HTξ‖}. Observe that whenever nonnegative vector θ,
symmetric matrix Θ, and H satisfy the matrix inequality[∑

` θ`R`
1
2
MTHT

1
2
HM Θ

]
� 0,

we have

E{‖HTξ‖} ≤ φR(θ) + Tr(Θ). (#)

Indeed, under the claim’s premise one has
∀[z; ξ] : [Mz]THTξ ≤ zT [

∑
` θ`R`]z + ξTΘξ.

When z ∈ Z, one has zT [
∑

` θ`R`]z ≤ φR(θ) (check it!) ⇒
‖HTξ‖ = maxz∈Z[Mz]THTξ ≤ φR(θ) + ξTΘξ.

Taking expectation over ξ, we arrive at (#).
As a result of our observation, we see that
♣ One has

Ψ(H) ≤ Ψ(H) := minθ,Θ

{
φR(θ) + Tr(Θ) : θ ≥ 0,

[∑
` θ`R`

1
2
MTHT

1
2
HM Θ

]
� 0

}
.

• It turns out that Ψ on Ψ is tight within the factor O(1)
√

ln(L+ 1).

3.122

♣ Bottom line: Consider the convex optimization problem

Opt = min
H,λ,µ,θ,Θ

φT (λ) + φR(µ) + φR(θ) + Tr(Θ) :

λ ≥ 0, µ ≥ 0, θ ≥ 0[∑
`
µ`R`

1
2
MT [B −HTA]

1
2
[BT −ATH]M

∑
k
λkSk

]
� 0[∑

`
θ`R`

1
2
MTHT

1
2
HM Θ

]
� 0

(which is nothing but the problem of minimizing Φ(H) + Ψ(H) over H). This problem

is efficiently solvable, and the linear estimate x̂H∗ yielded by the H-component H∗ of
optimal solution satisfies the relation

Risk[x̂H∗|X] ≤ Risk[x̂H∗|X] ≤ Opt.

• Note: From remarks on tightness of the upper bounds Φ, Ψ it follows that the linear
estimate from Bottom line is optimal, within the “moderate” factor O(1) ln(K + L), in
terms of its risk among all linear estimates.
• Surprisingly, it turns out that the estimate in question is optimal, within the factor
O(1)

√
ln(K + 1) ln(L+ 1), among all estimates, linear and nonlinear alike.

3.123

How it works

Situation: We want to recover image x ∈ X from its blurred noisy observation y:

y = κ ? x+ σξ

• x ∈ Rm×n: true image
• blur x 7→ κ ? x: 2D convolution of x with given blurring kernel κ
• observation noise ξ: 2D White Gaussian with unit pixel-wise variance

3.124

Blurred noisy observations (top) and recoveries (bottom) of 1200×1600 image, ill-posed case

[with X given by trivial bound on signal’s energy]

σ = 1.992 σ = 0.498 σ = 0.031

200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200

200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200

200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200

200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200

200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200

200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200

3.125

Blurred noisy observations (top) and recoveries (bottom) of 1200×1600 image, ill-posed case
[with X given by Energy and rudimentary form of Total Variation constraints]

σ = 1.992 σ = 0.498 σ = 0.031

200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200

200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200

200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200

200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200

200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200

200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200

3.126

Blurred noisy observations (top) and recoveries (bottom) of 1200×1600 image, well-posed case
[with X given by trivial bound on signal’s energy]

σ = 31.88 σ = 7.969 σ = 0.498

200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200

200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200

200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200

200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200

200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200

200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200

3.127

E. The Matrix Cube Theorem. Consider the following problem:
MATRCUBE: Given symmetric m×m matrices B0 � 0, B1, ..., BL, solve the optimization
problem

ρ∗ = max

{
ρ : A[ρ] ≡

{
B0 +

∑L

`=1
u`B` : ‖u‖∞ ≤ ρ

}
⊂ Sm+

}
i.e., find the largest ρ such that the “matrix box” A[ρ] is contained in the semidefinite
cone.
This problem is easy when all “edge matrices” B`, ` ≥ 1, are of rank 1, and can be
NP-hard already when the “edge matrices” are of rank 2.
However: There is a simple sufficient condition for the inclusion A[ρ] ⊂ S+

m based on
termwise bounding:

Let X` be such ±B` � X`, or, which is the same, sB` � −|s|X` for all s, so
that

∑
` u`B` � −‖u‖∞

∑
`X`. As a result, existence of X` � ±B` such that

B0 − ρ
∑

`X` � 0 implies that A[ρ] ⊂ S+
m.

3.128

Matrix Cube Theorem [Ben-Tal & Nemirovski, ’00] Given ρ ≥ 0, consider the system
of LMI’s

X` � ±B`, ` = 1, ..., L,
ρ
∑L

`=1X
` � B0

(S[ρ])

in matrix variables X1, ..., XL.
(i) If (S[ρ]) is solvable, then A[ρ] is contained in Sm+
(ii) If (S[ρ]) is unsolvable, then A[ϑ(µ)ρ] is not contained in Sm+. Here

µ = max
1≤`≤L

Rank(B`)

(note ` ≥ 1 in the max!) and ϑ(µ) is a universal function such that

ϑ(1) = 1, ϑ(2) =
π

2
, ϑ(k) ≤

π
√
k

2
.

In particular, the efficiently computable quantity

ρ̂ = max {ρ : (S[ρ]) is solvable}
is a lower bound on ρ∗, and this bound is tight within the factor ϑ(µ): ρ̂ ≤ ρ∗ ≤ ϑ(µ)ρ̂.

3.129

Application: Lyapunov Stability Analysis revisited

♠ Recall that Lyapunov Stability Certificates, if any, for uncertain dynamical system

ẋ = A(t)x, [A(t) ∈ U]

are exactly the solutions X to the semi-infinite system of LMIs

X � I, ATX +XA � −I ∀(A ∈ U) (L[U])

Consider the case of “interval uncertainty”:

U = Uρ ≡
{
A : |Aij −A∗ij| ≤ ρDij, i, j = 1, ..., n

}
,

where A∗ is the (stable) “nominal matrix”, ρ is the level of perturbations, and Dij ≥ 0
are “perturbation scales”.
How to compute the Lyapunov Stability Radius

LSR[A∗, D] = sup {ρ : (L[Uρ]) is solvable} ?

3.130

• The interval uncertainty is a polytopic one, so that the semi-infinite system of LMIs
(L[Uρ]) is equivalent to the finite system of LMIs

X � I, ATj X +XAj � −I ∀j = 1, ..., J, (*)

where A1, ..., AJ are the vertices of the matrix box Uρ. However, J can blow up expo-
nentially with the size n of the underlying dynamical system, so that (∗) is not compu-
tationally tractable, except for the case when “nearly all” entries in A(t) are certain.
• In fact, the problem of computing LSR for a general-type interval uncertainty is NP-
hard.

3.131

• Observe that

LSR[A∗, D] = sup

{
ρ : ∃X � I : ATX +XA � −I ∀(A : |Aij −A∗ij| ≤ ρDij)

}
= sup

{
ρ : ∃X � I : [−I − (A∗)TX −XA∗]︸ ︷︷ ︸

B0[X]

+
∑

i,juijDij[eje
T
i X +Xeie

T
j]︸ ︷︷ ︸

Bij[X]

� 0

∀(u : ‖u‖∞ ≤ ρ)

}
= sup

X�I
ρ(X),

ρ(X) = sup
{
ρ : B0[X] +

∑
i,juijBij[X] � 0 ∀(u : ‖u‖∞ ≤ ρ)

}
ρ(X) is the optimal value in a MATRCUBE problem with rank 2 edge matrices Bij[X].
Applying the Matrix Cube Theorem, we conclude that The efficiently computable quan-
tity

L̂SR[A∗, D] = sup
ρ,X,{X ij}

ρ :
X � I

Xij � ±Bij[X], 1 ≤ i, j ≤ n
ρ
∑

i,jX
ij � B0[X]

is a lower bound, tight within the factor π

2
, on the Lyapunov Stability Radius LSR[A∗, D].

3.132

♣ Similarly to Lyapunov Stability Analysis, the Matrix Cube Theorem allows to build
tight, within an absolute constant factor, tractable approximations of numerous Control-
originating semi-infinite LMIs affected by interval uncertainty.

3.133

Matrix Cube Theorem – Sketch of the Proof

Matrix Cube Theorem: Given ρ ≥ 0, consider the system of LMI’s

X` � ±B`, ` = 1, ..., L,
ρ
∑L

`=1X
` � B0

(S[ρ])

in matrix variables X1, ..., XL.
(i) If (S[ρ]) is solvable, then the “matrix box”

A[ρ] ≡
{
B0 + ρ

∑
`
u`B` : ‖u‖∞ ≤ 1

}
is contained in Sm+
(ii) If (S[ρ]) is unsolvable, then the matrix box A[ϑ(µ)ρ] is not contained in Sm+. Here

µ = max
1≤`≤L

Rank(B`)

(note ` ≥ 1 in the max!) and ϑ(µ) is a universal function such that

ϑ(1) = 1, ϑ(2) =
π

2
, ϑ(k) ≤

π
√
k

2
.

(i) is evident: whenever X1, ..., XL is a solution to (S[ρ]), we have

‖u‖∞ ≤ 1⇒ u`B` � −X` ∀`⇒ B0 + ρ
∑

`
u`B` � B0 − ρ

∑
`
X` � 0.

(ii): Assume that (S[ρ]) is not solvable, and let us prove that A[ϑ(µ)ρ] is not contained
in the positive semidefinite cone, provided that ϑ(µ) is chosen properly. There is nothing
to prove when B0 6� 0. Thus, let B0 � 0.

3.134

♣ Step 1. We have assumed that the system

X` � ±B`, ` = 1, ..., L,
ρ
∑L

`=1X
` � B0

(S[ρ])

has no solutions. Consider the semidefinite program

Opt = min
X `,t

{
t :

X` � ±B`, ` = 1, ..., L,
ρ
∑L

`=1X
` � B0 + tI

}
(P)

The problem clearly is feasible and has compact level sets, and is therefore solvable.
Since (S[ρ]) has no solutions, the optimal value in (P) is positive. Since the problem
clearly is strictly feasible, the dual problem is solvable with positive optimal value.

3.135

Opt = min
X `,t

{
t :

X` � ±B`, ` = 1, ..., L,
tI − ρ

∑L
`=1X

` � −B0

}
(P)

♣ Step 2. Let us build the dual. Let
• U` � 0 be the “aggregation weights” for the constraints X` � B`,
• V` � 0 be the aggregation weights for the constraints X` � −B`,
• W � 0 be the aggregation weight for the last LMI in (P).
♣ Aggregating the LMIs in (P) with the above weights, we get the inequality∑

`
Tr([U` + V` − ρW]X`) + tTr(W) ≥

∑
`
Tr([U` − V`]B`)−Tr(WB0)

Restricting the weights to be such that the left hand side in this inequality, as a function
of X` and t, is identically equal to the objective in (P):

U` + V` = ρW, ` = 1, ..., L; Tr(W) = 1 (∗)
we obtain the lower bound

∑
`Tr([U` − V`]B`) −Tr(WB0) on Opt. The dual problem is

to maximize this bound:

max
U`,V`,W

{∑
`
Tr([U` − V`]B`)−Tr(WB0) :

U` + V` = W, ` = 1, ..., L
Tr(W) = 1, U`, V`,W � 0

}
(D)

and we know that the optimal value in the dual is positive.

3.136

0 < max
U`,V`,W

{∑
`
Tr([U` − V`]B`)−Tr(WB0) :

U` + V` = W, ` = 1, ..., L
Tr(W) = 1U`, V`,W � 0

}
(D)

♣ In (D), we can carry out maximization in U`, V` analytically. Indeed, this maximization
requires solving the problem of the form

m(B,Z) ≡ max
U,V
{Tr([U − V]B) : U � 0, V � 0, U + V = Z} , (A)

with given Z � 0. Assume for a moment that Z � 0, and let us pass in (A) to new
variables

P = Z−1/2UZ−1/2, Q = Z−1/2V Z−1/2.

We have

U � 0⇔ P � 0, V � 0⇔ Q � 0, U + V = Z ⇔ P +Q = I

Tr([U − V]B) = Tr(Z1/2[P −Q]Z1/2B) = Tr([P −Q] (Z1/2BZ1/2)︸ ︷︷ ︸
C

)

⇒ m(B,Z) = max
P
{Tr([2P − I]C) : 0 � P � I}

3.137

⇒ representing C = UDiag{λ(C)}UT with orthogonal U ,

m(B,Z) = max
P
{Tr([2P − I]C) : 0 � P � I}

= max
P

{
Tr(UT [2P − I]UDiag{λ(C)}) : 0 � P � I

}
= max

P

{
Tr([2UTPU︸ ︷︷ ︸

R

−I]Diag{λ(C)}) : 0 � P � I
}

= max
P

{
Tr(UT [2P − I]UDiag{λ(C)}) : 0 � P � I

}
= max

R
{Tr([2R− I]Diag{λ(C)}) : 0 � R � I}

= max
R

{∑
iλi(C)(2Rii − 1) : 0 � R � I

}
=

∑
i|λi(C)|.

By continuity arguments, the resulting equality (proved when Z � 0) holds true for Z � 0
as well.

3.138

0 < max
U`,V`,W

{∑
`Tr([U` − V`]B`)−Tr(WB0) :

U` + V` = W, ` = 1, ..., L
Tr(W) = U`, V`,W � 0

}
(D)

max
U,V

{
Tr([U − V]B) :

U, V � 0
U + V = Z

}
= ‖λ(Z1/2BZ1/2)‖1

♣ After optimization in U` and V`, (D) becomes

0 < max
W�0

{∑
`
ρ‖λ(W 1/2B`W

1/2)‖1 −Tr(WB0(: Tr(W) = 1
}
,

so that

ρ
∑L

`=1‖λ(W 1/2B`W
1/2)‖1 > Tr(W 1/2B0W 1/2)

for appropriately chosen W � 0.

3.139

Situation: Assuming that (S[ρ]) has no solutions, there exists W � 0 such that

ρ
∑L

`=1
‖λ(W 1/2B`W

1/2)‖1 > Tr(W 1/2B0W
1/2). (∗)

Step 3: Probabilistic interpretation of (*). Let ξ be the standard (zero mean, unit
covariance matrix) Gaussian random vector in Rm, and A be a symmetric m×m matrix
of rank k. What is the expectation of the modulus of the quadratic form ξTAξ?
Representing A = UDiag{λ}UT with orthogonal U and setting η = UTξ, observe that the
distribution of η is exactly the same as the one of ξ; thus, our question becomes what
is the expectation of

ζ =

∣∣∣∣∑k

i=1
λiη

2
i

∣∣∣∣
where ηi ∼ N (0,1) are independent of each other. Common sense says that the expec-
tation of ζ is at least O(1)‖λ‖2 ≥ O(1)k−1/2‖λ‖1. Specifically, setting

ϑ(k) =
1

min

{∫ ∣∣∣∣∑k

i=1
λiη

2
i

∣∣∣∣ (2π)−k/2e−
η2
1

+...+ηk
k

2 dη1...dηk : ‖λ‖1 = 1

}
one can easily verify that

ϑ(1) = 1, ϑ(2) =
π

2
, ϑ(k) ≤

π
√
k

2
,

while by definition of ϑ(·) one has

ϑ(Rank(A))E
{
|ξTAξ|

}
≥ ‖λ(A)‖1

for every symmetric matrix A.

3.140

Situation: Assuming that (S[ρ]) has no solutions, there exists W � 0 such that

ρ
∑L

`=1
‖λ(W 1/2B`W

1/2)‖1 > Tr(W 1/2B0W
1/2). (∗)

Besides this, we have seen that with properly chosen function ϑ(·) such that

ϑ(1) = 1, ϑ(2) =
π

2
, ϑ(k) ≤

π
√
k

2
,

for standard Gaussian vector ξ and every symmetric matrix A one has

ϑ(Rank(A))E
{
|ξTAξ|

}
≥ ‖λ(A)‖1 (∗∗)

• Let ξ ∼ N (0, Im) and let µ = max
`≥1

Rank(B`). We have

E
{
ρ
∑k

`=1ϑ(µ)|ξTW 1/2B`W
1/2ξ|

}
≥ ρ

∑L
`=1‖λ(W 1/2B`W

1/2)‖1 [by (∗∗)]

> Tr(W 1/2B0W 1/2) [by (∗)] = E
{
ξTW 1/2B0W 1/2ξ

}
[evident]

Thus,

E

{
ξTW 1/2B0W

1/2ξ − ξρϑ(µ)
∑k

`=1
|ξTW 1/2B`W

1/2ξ|
}
< 0.

It follows that there exists η̄ = W 1/2ξ̄ such that η̄TB0η̄ − ρϑ(µ)
∑k

`=1|η̄TB`η̄| < 0 Set-

ting u` = −ρϑ(µ)sign(η̄TB`η̄), we get ‖u‖∞ = ρϑ(µ) and η̄T
[
B0 +

∑
`
u`B`

]
︸ ︷︷ ︸

∈A[ϑ(µ)ρ]

η̄ < 0, i.e.,

A[ϑ(µ)ρ] 6⊂ Sm+. �

3.141

F. Approximate S-Lemma. Consider quadratic maximization over a single-parametric
family of similar to each other ellitopes:

Opt∗[ρ] = max
z∈Z[ρ]

[
zTQz + 2qTz

][
Z[ρ] = {z ∈ Rn : ∃t ∈ T : zTSkz ≤ ρtk, k ≤ K}

Sk � 0,
∑

k Sk � 0, T ⊂ RK
+ : tractable monotone convex compact set, int T 6= ∅

] [ρ > 0]

along with efficiently computable quantities

Opt[ρ] = min
λ,µ

ρφT (λ) + µ :

λ, µ ≥ 0[
Q q
qT

]
�
[∑

k λkSk
µ

] [
φT (λ) = maxt∈T λT t : support function of T

]
Then

Opt∗[ρ] ≤ Opt[ρ] ≤ Opt∗[κρ], κ = 3 ln(6K).

3.142

• Note: In the homogeneous case q = 0, this result basically reproduces what we know
about the quality of semidefinite relaxation when maximizing a homogeneous quadratic
form over an ellitope. Moreover, Opt[ρ] is exactly the semidefinite relaxation bound

Opt∗[ρ] = max
x∈Z[ρ]

[
xTQx+ 2qTx

]
= max

[x;r]∈Z[ρ]×{r2≤1}

[
xTQx+ 2rqTx

]
on the maximum of homogeneous quadratic form of [x; r] over the ellitope Z[ρ]×{r2 ≤ 1}.
Note: The novelty is not in how the relaxation bound is built, but in how we quantify
its tightness:
— in our previous results, the tightness was the ratio of the bound Opt[ρ] on the
“quantity of interest” Opt∗[ρ] to the actual value of this quantity.
— in constast, in Approximate S-Lemma tightness is quantified in terms of the “size”
ρ of the ellitope over which we are maximizing — by which factor κ should we increase
ρ in order to get Opt[ρ] ≤ Opt∗[κρ].
• In the homogeneous case q = 0, Opt∗[ρ] is proportional to ρ, both ways to quantify
tightness are the same; in the inhomogeneous case, they are different.

3.143

Application: Affinely Adjustable Robust Counterparts of Uncertain Linear Pro-
grams with ellitopic uncertainty
♠When speaking about AARC’s (Affinely Adjustable Robust Counterparts) of uncertain
LP’s

{min{cTx : Ax ≤ b}
∣∣[A, b] ∈ U},

we have seen that in the case of fixed recourse, i.e., when all coefficients at adjustable
variables are certain, AARC becomes a problem with semiinfinite scalar linear constraints
affinely affected by the uncertainty and therefore is reducible to Conic Quadratic Pro-
gramming, provided the uncertainty set is CQr with essentially strictly feasible CQR.
• Needless to say, we can replace here CQr (CQR) with SDr (SDR).
♠When there is no fixed recourse, the AARC becomes a problem with semiinfinite scalar
constraints quadratically affected by ucertainty
⇒AARC can become intractable even for a simple uncertainty set U.
Partial remedy: Pass from intractable AARC to its safe tractable approximation.
With parametric ellitopic uncertainty, a good approximation is given by Approximate
S-Lemma.

3.144

Uncertain LP to be solved in Affine Decision Rules: {min{cTx : Ax ≤ b}
∣∣[A, b] ∈ U}

♠ Assume that the uncertainty is ellitopic and is parameterized by “uncertainty level” ρ,
specifically, [A, b] is affinely parameterized by “perturbation” ζ running through ellitope
from a single-parametric family:

U = U[ρ] :=
{

[A, b] = [A∗, b∗] +
∑

i ζi[A
i, bi] : ζ ∈ Z[ρ]

}
Z[ρ] = {ζ : ∃t ∈ T : ζTSkζ ≤ ρtk, k ≤ K}

with Sk, T as required by the definition of an ellitope.
With this parametric uncertainty, the AARC of our uncertain LP becomes parametric
semiinfinite problem of the form

Opt∗[ρ] = min
y

{
cTy : [ζ; 1]TQi[y][ζ; 1] ≤ 0 ∀ζ ∈ Z[ρ], i ≤ I

}
AARC[ρ]

• y: design variables (coefficients of affine decision rules)
• Qi[y]: affine in y symmetric matrices.

3.145

Opt∗[ρ] = min
y

{
cTy : [ζ; 1]TQi[y][ζ; 1] ≤ 0∀ζ ∈ Z[ρ], i ≤ I

}
AARC[ρ]

Fact: Utilizing Approximate S-Lemma as explained in Section 3.5.3.1 of Lecture Notes,
one can build an efficiently solvable parametric convex problem APPR[ρ] in “variables
of interest” y and “analysis variables” ω and with the same objective cTy as in AARC[ρ]
such that
• The y-component of every feasible solution (y, ω) to APPR[ρ] is feasible for AARC[ρ].
As a result, we can find efficiently an approximate solution to the problem of interest
AARC[ρ] with the value of the objective upper-bounded by the optimal value Opt[ρ] of
the approximating problem APPR[ρ]
• One has Opt[ρ] ≤ Opt∗[κρ], κ = 3 ln(6K)

3.146

In words: We can build a computationally tractable safe approximation APPR[ρ] of
(by itself, NP -hard in general) problem of interest AARC[ρ], safety meaning that the
projection A[ρ] of the feasible set of the approximation on the space of variables of
interest y is inside the true feasible set R[ρ] of AARC[ρ]. This approximation is reasonably
tight: A[ρ] contains R[κρ] with “‘moderate” – logarithmic in K – factor κ.

Magenta curve: boundary of the true robust feasible set R[ρ] at uncertainty level ρ
Red curve: boundary of the true robust feasible set R[κρ] at uncertainty level κρ
Blue curve: boundary of safe tractable approximation A[ρ] of R[ρ]

3.147

Application: Robust Conic Quadratic Programming with ellitopic uncertainty.
Consider a conic quadratic inequality

‖Ax+ b‖2 ≤ τ (CQI)

in variables x, τ and assume that the data [A, b] of this c.q.i. is not known exactly and
run through a given uncertainty set U. How to process the Robust Counterpart

‖Ax+ b‖2 ≤ τ ∀[A, b] ∈ U (RC)

of (CQI)?
♣ Assume that the uncertainty is ellitopic and is parameterized by “uncertainty level” ρ,
specifically, [A, b] is affinely parameterized by “perturbation” ζ running through ellitope
from a single-parametric family:

U = U[ρ] :=
{

[A, b] = [A∗, b∗] +
∑

i ζi[A
i, bi] : ζ ∈ Z[ρ]

}
Z[ρ] = {ζ : ∃t ∈ T : ζTSkζ ≤ ρtk, k ≤ K}

with Sk, T as required by definition of an ellitope.
With this parametric uncertainty, (RC) also becomes parametric:

‖Ax+ b‖2 ≤ τ ∀[A, b] ∈ U[ρ] RC[ρ]

3.148

U = U[ρ] :=
{

[A, b] = [A∗, b∗] +
∑

i ζi[a
i, bi] : ζ ∈ Z[ρ]

}
Z[ρ] = {ζ : ∃t ∈ T : ζTSkζ ≤ ρtk, k ≤ K}

‖Ax+ b‖2 ≤ τ ∀[A, b] ∈ U[ρ] RC[ρ]

Fact: Utilizing Approximate S-Lemma as explained in Section 3.5.3.2 of Lecture Notes,
one can build an explicit computationally tractable system S[ρ] of parameterized by ρ
convex constraints on “variables of interest” x, τ and “analysis variables” ω such that
• if x, τ can be extended by appropriately chosen value of ω to yield a feasible solution
to S[ρ], then x, τ is feasible for RC[ρ]
• if x, τ cannot be extended to a feasible solution to S[ρ], then x, τ is not feasible for
RC[κρ], with κ = 3 ln(6K)
In words: We can build a computationally tractable safe approximation S[ρ] of (by itself,
NP -hard in general) Robust Counterpart RC[ρ], safety meaning that the projection A[ρ]
of the feasible set of the approximation on the space of “variables of interest” x, τ is
inside the true feasible set R[ρ] of RC[ρ]. This approximation is reasonably tight: A[ρ]
contains R[κρ] with “moderate” – logarithmic in K – factor κ.

3.149

How it Works: Antenna Synthesis revisited

♠ When motivating Robust LP, we considered Antenna Design problem, where one
was interested to approximate the desired target diagram (periodic function of altitude
angle) by a linear combination of diagrams of given antenna elements (concentric planar
circles), and the uncertainty came from implementation errors.

• When quantifying the discrepancy between the target and the synthesized diagrams by
‖ · ‖∞-distance on a finite grid, the problem of interest becomes uncertain LP problem,
and its Robust Couinterpart is easy to process.

• When quantifying the discrepancy between the target diagram D∗ and the synthesized
diagrams D by ‖ · ‖2-distance on a finite grid, the problem of interest becomes an
uncertain conic quadratic inequality

{‖Ax+ b‖2 ≤ τ
∣∣[A, b] ∈ U[ε]}, U[ε] = {[A, b] = [A∗, b∗] +

∑
k ζk[A

k,0] : |ζk| ≤ ε ∀k}
• Ai: obtained from A∗ by zeroing out all columns except for k-th one

Note: Up to reparameterization ε 7→ ρ = ε2, we are in the case of single-parametric
ellitopic uncertainty:

U[ε] = {ζ : ∃t ∈ [0,1]K : ζ2
k ≤ ε2tk, k ≤ K}

and can apply our machinery to safely approximate the Robust Counterpart of our
uncertain problem.

3.150

• The Nominal design – the one corresponding to ε = 0 – is completely unstable w.r.t.
small implementation errors

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

 0.23215

 0.4643

 0.69644

 0.92859

 1.1607

30

210

60

240

90

270

120

300

150

330

180 0

103
110

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

103
110

Dream
no errors

‖D∗ −D‖2 = 0.014

Reality
sampled D, 0.1% errors
‖D∗ −D‖2 ∈ [0.17,0.89]

Reality
sampled D, 2% errors
‖D∗ −D‖2 ∈ [2.9,19.6]

Nominal design: dream and reality. Range ‖D∗ −D‖ obtained from 100-element sample.

Note: D∗ is 1 in acute angles with green sides and is 0 in obtuse angles with magenta
sides

3.151

♠ Safe tractable approximation of the Robust Counterpart of our uncertain conic
quadratic inequality yields incomparably more meaningful Robust design:

 0.20689

 0.41378

 0.62066

 0.82755

 1.0344

30

210

60

240

90

270

120

300

150

330

180 0

103
110

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

 0.2084

 0.41681

 0.62521

 0.83362

 1.042

30

210

60

240

90

270

120

300

150

330

180 0

103
110

Dream
no errors

‖D∗ −D‖2 = 0.025

Reality
sampled D, 0.1% errors
‖D∗ −D‖2 ≈ 0.025

Reality
sampled D, 2% errors
‖D∗ −D‖2 ≈ 0.025

Robust design: dream and reality, data over 100-element sample.

3.152

Proof of S-Lemma

S-Lemma: Let A,B be symmetric m ×m matrices such that x̄TAx̄ > 0 for certain x̄.
Then the implication

∀x : xTAx ≥ 0⇒ xTBx ≥ 0 (∗)
holds true iff

∃λ ≥ 0 : B � λA (∗∗)

• (∗∗)⇒ (∗): evident.
• (∗)⇒ (∗∗): Consider the following “relaxation” of (∗):

∀(X � 0) : Tr(XA) ≥ 0⇒ Tr(XB) ≥ 0 (R)

Step 1: Claim: Under the premise of S-Lemma, (R) is equivalent to (∗∗).
Indeed, under the premise of S-Lemma, the semidefinite program

min
X
{Tr(BX) : X � 0,Tr(AX) ≥ 0}

is strictly feasible, and (R) just says that the optimal value in this problem (which is
either 0, or −∞) is 0. Applying Conic Duality Theorem, this is the case iff the dual
problem

max
λ,S
{0 : B = λA+ S, S � 0, λ ≥ 0}

is feasible, i.e., iff (∗∗) takes place.
• Thus, to complete the proof of S-Lemma, it suffices to verify that

(∗)⇒ (R).

3.153

∀x : xTAx ≥ 0⇒ xTBx ≥ 0 (∗)

∀(X � 0) : Tr(XA) ≥ 0⇒ Tr(XB) ≥ 0 (R)

Goal: to prove that (∗)⇒ (R).
Proof: Assume that (∗) takes place and that X � 0 is such that Tr(AX) ≥ 0; we should
prove that then Tr(BX) ≥ 0 as well.
Let us set

Ā ≡ X1/2AX1/2 = UDiag{λ}UT , η = X1/2Uξ,

where ξ is a random vector with independent coordinates taking values ±1 with proba-
bilities 1/2. We have

ηTAη = ξTUTX1/2AX1/2Uξ = ξTDiag{λ}ξ = Tr(Diag{λ}) = Tr(X1/2AX1/2) = Tr(AX) ≥ 0
⇓ (∗)

ηTBη ≥ 0
⇓

0 ≤ E
{
ηTBη

}
= E

{
ξTUTX1/2BX1/2Uξ

}
= Tr(UTX1/2BX1/2U) = Tr(X1/2BX1/2) = Tr(BX)

Q.E.D.

3.154

Extremal Ellipsoids

♣ An ellipsoid in Rn is, by definition, the image of the unit Euclidean ball

Bn = {u ∈ Rn : uTu ≤ 1}
under an affine mapping u 7→ Au+ a:

E = {x = Au+ a : uTu ≤ 1}. (∗)
Note:
• An ellipsoid is a convex compact set symmetric w.r.t. a. Consequently, The center
a of an ellipsoid E is uniquely defined by the set E.
• An ellipsoid E is “full-dimensional”, that is, possesses a nonempty interior, iff A in (∗)
is nonsingular.
• Matrix A in (∗) is not uniquely defined by E; replacing in (∗) A with AU , where U is
orthogonal, we preserve the right hand side set. In particular, Among the matrices A
participating in representations of a given ellipsoid E, there exists a positive semidefinite
one, which is uniquely defined by the set E.

3.155

E = {x = Au+ a : uTu ≤ 1}. (∗)
♣ Bottom line: If a set E ⊂ Rn is an ellipsoid, that is, admits a representation (∗),
then E admits a representation (∗) with A � 0. In this image representation of E, both
A � 0 and a are uniquely defined by the set E.
• An ellipsoid with image representation given by matrix A � 0 and vector a will be
denoted E(A, a):

E(A, a) = {Au+ a : uTu ≤ 1} ⊂ Rn [A ∈ Sn+, a ∈ Rn]

3.156

Inequality Representation of Full-Dimensional Ellipsoid
and Elliptic Cylinders

♣ Consider a quadratic form

f(x) = xTPx− 2pTx (f)

on Rn. This form is below bounded if and only if the following two conditions hold:
• The form is convex: P � 0
• The Fermat equation

∇f(x) = 0⇔ Px = p (F)

has a solution x∗.
In particular, if f(·) is below bounded, then there exists a representation

f(x) = xTB2x− 2bTBx, (∗)
where B � 0 and b ∈ Im B Indeed, in the case of 1), 2) one can set B = P 1/2, b = P 1/2x∗.
Vise versa, if f(·) can be represented in the form (∗) with B � 0 and b ∈ ImB, then 1),
2) hold true, so that below boundedness of f is equivalent to the possibility to represent
f by (∗) with B � 0, b ∈ ImB.

3.157

♣ A below bounded quadratic form f(x) can be represented as

f(x) = xTB2x− 2bTBx
[B � 0, b ∈ ImB]

(∗)

Note that Form (∗) attains its minimum, which is equal to −bT b.
Indeed, relation b ∈ ImB means that b = Bx∗ for certain x∗. Then

∇f(x∗) = 2B2x∗ − 2Bb = 2B2x∗ − 2B2x∗ = 0

that is, x∗ is a critical point and thus – a minimizer of the convex function f . We have

f(x∗) =
T

(Bx∗)︸ ︷︷ ︸
b

(Bx∗)− 2bTBx∗ = −bTBx∗ = −bT b.

♣ Let f be a below bounded quadratic form on Rn, and let f∗ be its minimum value.
The “nontrivial” levels sets of f , that is, level sets of the form

C = {x : f(x) ≤ f∗ + r2} [r > 0] (C)

are called “elliptic cylinders”.

3.158

A below bounded quadratic form f(x) can be represented as

f(x) = xTB2x− 2bTBx
[B � 0, b ∈ ImB]

⇒ ∃x∗ : b = Bx∗ ⇒ x∗ ∈ Argminx f(x) & f(x∗) = −bT b
(∗)

C = {x : f(x) ≤ f∗ + r2} [r > 0] (C)

♠ In representation (∗), an elliptic cylinder is

C = {x : ‖Bx− b‖2
2 ≤ r2}

When θ > 0, the data (B, b, r) and (θB, θb, θr) define the same cylinder, so that by
normalization we may assume that r = 1. The representation

C = {x : ‖b−Bx‖2
2 ≤ 1} [B � 0, b ∈ ImB]

is called inequality representation of elliptic cylinder. The data B, b of this representation
are uniquely defined by the set C.

3.159

C = {x : ‖b−Bx‖2
2 ≤ 1} [B � 0, b ∈ ImB]

• C is bounded iff B � 0, and iff C is a full-dimensional ellipsoid. Indeed,
• We clearly have C = C + KerB. Thus, if C is bounded, then KerB = {0}, that is,
B � 0. Vice versa, if B � 0, then C clearly is bounded.
• We have

B � 0⇒{x : ‖Bx− b︸ ︷︷ ︸
u

‖2
2 ≤ 1} = {x = B−1u+B−1b : uTu ≤ 1}

A � 0⇒{x = Au+ a : uTu ≤ 1} = {x : ‖A−1x−A−1a︸ ︷︷ ︸
u

‖2
2 ≤ 1}

• When B � 0 is degenerate, the elliptic cylinder C can be represented as the sum of
the set

C0 = {x ∈ ImB : ‖b−Bx‖2
2 ≤ 1}

(which is a full-dimensional ellipsoid in the subspace ImB = (KerB)⊥) and the linear
subspace KerB.

3.160

Bottom line: We have defined
• Ellipsoids in Rn – sets representable as

E = E(A, a) ≡ {x = Au+ a : uTu ≤ 1}, (E)

where A � 0. The data A, a of this image representation of E are uniquely defined by
the set E itself.
Ellipsoid E is full-dimensional (that is, intE 6= ∅) if and only if A � 0, otherwise the
ellipsoid is “flat” – it is contained in the plane a+ImA, which is a proper affine subspace
of Rn.
• Elliptic cylinders in Rn – sets representable as

C = C(B, b) ≡ {x : ‖Bx− b‖2
2 ≤ 1} (C)

where B � 0 and b ∈ ImB. The data B, b of this inequality representation of C are
uniquely defined by the set C itself.
Elliptic cylinder C is bounded if and only if B � 0, and in this case C is just a full-
dimensional ellipsoid, otherwise C is the sum of the kernel of B and a full-dimensional
ellipsoid in the image space of B.

3.161

• Full-dimensional ellipsoids E admit both image and inequality representations:

A � 0⇒ E ≡ {x = Au+ a : uTu ≤ 1} = {x : ‖Bx− b‖2 ≤ 1}
with the parameters of the representations linked by the relations

B = A−1 ⇔ A = B−1

b = A−1a ⇔ a = B−1b

3.162

Volume of an Ellipsoid

♣ Under affine transformation

x 7→ Ax+ a : Rn → Rn,

n-dimensional volumes of sets are multiplied by |Det(A)|:

Vol({y = Ax+ a : x ∈ U}) = |Det(A)|Vol(U).

In particular, The volume of ellipsoid E(A, a) is Det(A) times the volume of the unit
Euclidean ball in Rn.
♣ In what follows, it is convenient to choose, as the unit of volume in Rn, the volume of
the unit Euclidean ball rather than the volume of the unit cube. With this convention,
The volume of ellipsoid E(A, a) is Det(A), and the volume of full-dimensional ellipsoid
C(B, b) is

1

Det(B)
.

3.163

Half-Axes of an Ellipsoid

♣ Let E = E(A, a), let ei be the orthonormal eigenbasis of A, and λi be the corresponding
eigenvalues. Let ξi(x) be the coordinates of x in the basis e1, ..., en. The fact that
x = Au+ a is equivalent to the relations

ξi(x)− ξi(a) = λiξi(u),

so that the fact that x ∈ E is equivalent to∑
i

(ξi(x)− ξi(a))2

λ2
i

≤ 1

[
t2

02 =

{
0, t = 0
+∞, t 6= 0

]
Geometrically: λi are the half-axes χi(E) of E, and ei are the directions of the principal
axes of E.
♣ For a full-dimensional ellipsoid E = E(A, a), all half-axes χi(E) ≡ λi(A) are positive.
In terms of the inequality representation E = C(B, b) of the ellipsoid, the half-axes are

χi(E) = λ−1
i (B).

3.164

♣ In the case of degenerate B, elliptic cylinder C = C(B, b) is the sum of an ellipsoid
C0 in the subspace ImB and the linear subspace KerB which is orthogonal to C0. It
makes sense to define the first Rank(B) half-axes of C as χi(C) = λ−1

i (B), where λi(B),
i = 1, ...,Rank(B), are the nonzero eigenvalues of B, and the remaining n − Rank(B)
half-axes of C as +∞.

3.165

♣ The basic problems on extremal ellipsoids are as follows:
Outer Approximation: (O): Given a bounded nonempty set X ⊂ Rn, find the “small-
est” ellipsoid containing X.

Inner Approximation: (I): Given a nonempty set X ⊂ Rn, find the “largest” ellipsoid
contained in X.
♣ In these problems, the “size” of an ellipsoid is an appropriate symmetric function of
the half-axes, e.g.
• χ1χ2...χn (the volume),
• max

i
χi (the radius of the smallest circumscribed ball),

• min
i
χi (the radius of the largest inscribed ball),

•
∑

iχ
α
i ,

• ...

3.166

♣ Extremal ellipsoids have numerous applications, including
• “optimal” methods of Nonsmooth Convex Optimization,
• identification and estimation in Control
• accurate integration of ordinary differential equations,
• ...
Example 1: Inscribed Ellipsoid Method. Theoretically optimal, in certain precise
sense, method for solving to high accuracy a general nonsmooth Convex Programming
program

min
X

f(x)

(X is a convex polytope given by linear inequalities, f is convex and continuous on X)
is the Inscribed Ellipsoid Method. At every step of this method, one should solve an
auxiliary problem of the form Find the largest volume ellipsoid contained in a polytope
given by a list of linear inequalities.

3.167

Example 2: Estimation in Dynamical System. Consider a Discrete Time Linear
Dynamical System:

z(t+ 1) = Az(t)
y(t) = Cz(t) + ξt

where
• z(t) is the state at time t,
• y(t) is the observation at time t,
• ξt is norm-bounded observation error: ‖ξt‖2 ≤ ρ,
• A and C are known matrices.
Example: z(t) is the position x(t) and the velocity v(t) of a plane flying at (unknown)
constant velocity, and y(t) are the observations of the position of the plane coming from
a radar: [

x(t+ 1)
v(t+ 1)

]
=

[
I3 I3

I3

] [
x(t)
v(t)

]
y(t) = x(t) + ξt

3.168

z(t+ 1) = Az(t)
y(t) = Cz(t) + ξt

Since the dynamics is known, all we need to identify the motion is the initial state z(0).
Some information on z(0) is contained in observations y(t): given y(t), we know that
z(0) belongs to the elliptic cylinder

Ct = {z : ‖CAtz − y(t)‖2
2 ≤ ρ2},

and all we know at time T is that z(0) belongs to the set

CT =
T⋂
t=0

Ct.

We may now want to build an estimate of z(0) as the center of the smallest ball
containing the set CT , which is the Outer Ellipsoidal Approximation problem where you
are interested to minimize the maximal half-axis of a circumscribed ellipsoid.

3.169

Example 3: Approximating reachable sets. Consider a controlled Discrete Time
Linear Dynamical System:

z(t+ 1) = Atz(t) +Btu(t) + ft, z(0) = z0 (1)

• z(t): states; • u(t): controls; • ft: known inputs; • At, Bt: known matrices.
Assume that the control u(t) is bounded:

‖u(t)‖2 ≤ ρt. (2)

The reachable set ZT of system (1) – (2) at time T is the set of all possible states z of
the system at time T :

ZT = {z : ∃{u(t), ‖u(t)‖2 ≤ ρt}T−1
t=0 : z(T) = z}.

3.170

ZT = {z : ∃{u(t), ‖u(t)‖2 ≤ ρt}T−1
t=0 : z(T) = z}.

Note:
• ZT is “computationally tractable”; e.g., to optimize a linear form cTz over ZT is the
same as to solve the conic quadratic problem

min
u(0),...,u(T−1)

z(1),...,z(T)

{
cTz(T) :

z(t+ 1) = Atz(t) +Btu(t) + ft, 0 ≤ t < T
‖u(t)‖2 ≤ ρt, 0 ≤ t < T, z(0) = z0

}
• ZT is the arithmetic sum of T ellipsoids:

z(T) = z0(T) +
∑T−1

τ=0 ATAT−1...Aτ+1Bτ︸ ︷︷ ︸
BT,τ

u(τ),

where z0(·) is the trajectory of (1) corresponding to u(·) ≡ 0. ⇒
ZT = z0(T) +

∑T−1
τ=0BT,τ{u : uTu ≤ ρ2

t }.
The reachable set ZT , while computationally tractable, becomes more and more com-
plicated as T grows. In many applications it makes sense to look for simple – ellipsoidal
– inner and outer approximations of ZT .

3.171

Tractability of Outer Ellipsoidal Approximation

♣ Observation O.1: Let X ⊂ Rn be a nonempty compact set. Then the set X of
parameters B, b of inequality representations of elliptic cylinders containing X is convex.
To prove that X is convex, let λ ∈ [0,1], (B, b), (C, c) ∈ X , so that B � 0, C � 0 and

∀x ∈ X :

{
‖Bx− b‖2 ≤ 1 [b ∈ ImB]
‖Cx− c‖2 ≤ 1 [c ∈ ImC]

(∗)

we should prove that (D, d) = λ(B, b) + (1 − λ)(C, c) ∈ X . There is nothing to prove
when λ = 0 or λ = 1, thus let 0 < λ < 1. From (∗) and Triangle inequality we get

∀x ∈ X : ‖Dx− d‖2 ≤ λ‖Bx− b‖2 + (1− λ)‖Cx− c‖2 ≤ 1;

thus, all we need is to verify that d ∈ ImD.

3.172

Situation:

λ ∈ (0,1) & (D, d) = λ(B, b) + (1− λ)(C, c)

Claim: d ∈ ImD.
Mini-Lemma: Let Ai � 0 and λi > 0, i = 1, .,K, and let A =

∑
iλiAi. Then

KerA =
⋂
i

KerAi (a); ImA = ImA1 + ...+ ImAK (b)

Proof: For C � 0, one has KerC = {x : xTCx = 0}. Since λi > 0 and Ai � 0, it
follows that xTAx = 0 iff xTAix = 0 for all i, which gives (a). (b) is equivalent to (a) by
elementary Linear Algebra. �

Since 0 < λ < 1, both B � 0 and C � 0 enter the expression D = λB + (1 − λ)C

with positive weights. By MiniLemma, it follows that ImD = ImB + ImC, whence
d = λb+ (1− λ)c ∈ ImD due to b ∈ ImB, c ∈ ImC. �

3.173

♣ Observation O.2: “Typical sizes” of full-dimensional ellipsoids E are convex (and
thus easy-to-minimize) functions of the parameters B, b of the inequality representation
of E. This is so, e.g., for the sizes
• Vol(E) =

∏
i

χi(E) (volume) or Vol1/n(E) (average linear size)

• max
i
χi(E) (minimal radius of circumscribed balls),

•
∑

iχ
p
i (E), p > 0,

where χi(E) are the half-axes of E.
Indeed, the half-axes of E are the eigenvalues of the “parameter” A = B−1 of the image
representation of E, that is, χi(E) = λ−1

i (B). Therefore

(a) Vol(E) = λ−1
n (B)...λ−1

n (B), Vol1/n(B) = λ
−1/n
1 (B)...λ−1/n

n (B)
(b) max

i
χi(E) = max

i
λ−1
i (B)

(c)
∑

iχ
p
i (E) =

∑
iλ
−p
i (B)

are convex symmetric functions of the eigenvalues of B � 0 and thus are convex functions
of B � 0.
Note: From Calculus of SDr Functions/Sets it follows that the sizes (a), (b) are SDr
functions of B; the same is true for size (c) provided that p > 0 is rational.

3.174

♣ Summary of observations: With the inequality representation of ellipsoids, typical
problems of outer ellipsoidal approximation become problems of minimizing convex SDr
functions over convex feasible sets.
⇒ If the feasible set of a problem of outer ellipsoidal approximation is “computationally
tractable” (in particular, is SDr), the problem itself is computationally tractable (in
particular, is an SDP).
Note: “If the feasible set ... is computationally tractable” is a big ”IF” indeed!

3.175

Tractability of Inner Ellipsoidal Approximation

♣ Observation I.1: Let X ⊂ Rn be a nonempty convex set. Then the set X of
parameters A, a of image representations of ellipsoids contained in X is convex.
To prove that X is convex, let λ ∈ [0,1], (A′, a′), (A′′, a′′) ∈ X , so that A � 0, A′ � 0 and

∀(u : uTu ≤ 1) :

 a′ +A′u ∈ X

a′′ +A′′u ∈ X
(∗)

we should prove that λ(A′, a′) + (1− λ)(A′′, a′′) ∈ X , that is,

∀(u : uTu ≤ 1) : [λa′ + (1− λ)a′′] + [λA′ + (1− λ)A′′]u
≡ λ[a′ +A′u] + (1− λ)[a′′ +A′′u] ∈ X.

But this is an immediate corollary of (∗) and the convexity of X.

3.176

♣ Observation I.2: “Typical sizes” of an ellipsoid E are concave (and thus easy-to-
maximize) functions of the parameters A, a of the image representation of E. This is
the case, e.g., for the sizes
• Vol1/n(E) =

∏
i

χ
1/n
i (E),

• min
i
χi(E) (“minimal width” of E, the radius of the largest Euclidean ball contained in

E)
• (
∑

iχ
p
i (E))1/p, 0 < p ≤ 1,

where χi(E) are the half-axes of E.
Indeed, the half-axes of E are the eigenvalues of the “parameter” A of the image
representation of E ⇒

(a) Vol1/n(E) = (λ1(A)...λn(A))1/n

(b) min
i
χi(E) = min

i
λi(A)

(c)
(∑

iχ
p
i (E)

)1/p
=

(∑
iλ
p
i (A)

)1/p

are concave symmetric functions of the eigenvalues of A � 0 and thus are concave
functions of A � 0.
Note: From Calculus of SDr Functions/Sets it follows that minus sizes (a), (b), and
minus size (c) with rational p — this is what we should minimize in order to maximize
the actual sizes – are SDr functions of A.

3.177

♣ Summary of observations: With the image representation of ellipsoids, typical
problems of inner ellipsoidal approximation become problems of minimizing convex SDr
functions over convex feasible sets.
⇒ If the feasible set of a typical problem of inner ellipsoidal approximation is “computa-
tionally tractable” (in particular, is SDr), the problem itself is computationally tractable
(in particular, is an SDP).
Note: “If the feasible set ... is computationally tractable” is a big ”IF” indeed!

3.178

♣ We have seen that the typical problems of inner and outer ellipsoidal approximation
are problems of minimizing explicit convex (usually even SDr) functions over convex fea-
sible sets. As we shall see in the mean time, problems of this type are “computationally
tractable” if the feasible sets are so.
♣ A sufficient condition for “computational tractability” of a convex set X is the pos-
sibility to solve efficiently the Analysis problem “Given x, check whether x ∈ X . ”
In our context, the Analysis problem is
• in Outer ellipsoidal approximation of a set X – problem

(AO) Given an ellipsoid E, check whether E ⊃ X.
• in Inner ellipsoidal approximation of a set X – problem

(AI) Given an ellipsoid E, check whether E ⊂ X.
Whether these analysis problems are/are not tractable, it depends on the structure of
X.

3.179

(AO) Given an ellipsoid E, check whether E ⊃ X.

• (AO) is easy when X is a polytope given as a convex hull of a finite set {x1, ..., xM}.
Indeed, Conv{x1, .., xM} ⊂ E iff xi ∈ E for all i, and it is easy to check whether or not a
point belongs to E.

• (AO) can be NP-hard when X is a polytope given by a list of linear inequalities.
Indeed, to check whether the unit cube {x : ‖x‖∞ ≤ 1} belongs to the centered at the
origin ellipsoid {x : xTQx ≤ r2}, where Q � 0, is the same as to verify whether

max
x
{xTQx : ‖x‖∞ ≤ 1} ≤ r2,

and the latter problem is, essentially, the NP-hard problem of maximizing positive defi-
nite homogeneous quadratic form over the unit cube.

3.180

(AI) Given an ellipsoid E, check whether E ⊂ X.

• (AI) is easy when X is a polytope P given by a list of linear inequalities aTi x ≤ bi,
1 ≤ i ≤ M . Indeed, to check whether an ellipsoid E is contained in P is the same as
to check whether max

x∈E
aTi x ≤ bi for all i, and it is easy to maximize a linear form over an

ellipsoid.
• (AI) can be NP-hard when X is a polytope given as Conv{x1, ..., xM}.

3.181

Basic fact [Boyd et al.] Let E = E(A, a) and C = C(B, b) be ellipsoid and elliptic cylinder
given, respectively, by image and inequality representations. Then

E ≡ E(A, a) ⊂ C ≡ C(B, b) (∗)

⇔ ∃λ :

 1− λ aTB − bT
λI AB

Ba− b BA I

 � 0 (∗∗)

Note: For E fixed, (∗∗) is an LMI in variable λ and in the parameters B, b of C. For C
fixed, (**) is an LMI in variable λ and in the parameters A, a of E.
Thus, both the facts that
— an ellipsoid is contained in a fixed elliptic cylinder
— an elliptic cylinder contains a fixed ellipsoid
are semidefinite representable!

3.182

E ≡ E(A, a) ⊂ C ≡ C(B, b)??⇔??∃λ :

 1− λ aTB − bT
λI AB

Ba− b BA I

 � 0

Proof of equivalence:

{Au+ a : uTu ≤ 1} ⊂ {x : ‖Bx− b‖2
2 ≤ 1} ⇔ ∀(u : uTu ≤ 1) : ‖BAu+Ba− b︸ ︷︷ ︸

c

‖2
2 ≤ 1

⇔︸︷︷︸
[u=t−1v]

∀(v, t : vTv ≤ t2, t 6= 0) : ‖t−1BAv + c‖2
2 ≤ 1 ⇔ ∀(v, t : vTv ≤ t2, t 6= 0) : ‖BAv + tc‖2

2 ≤ t2

⇔
∀(v, t : t2 − vTv ≥ 0) : t2 − ‖BAv + tc‖2

2 ≥ 0 ⇔︸︷︷︸
S-Lemma

∃λ ≥ 0 : t2 − ‖BAv + tc‖2
2 − λ

[
t2 − vTv

]
≥ 0 ∀(v, t)

⇔ ∃λ ≥ 0 :
[

1− λ
λI

]
−
[

cT

AB

] [
cT

AB

]T
� 0

⇔︸︷︷︸
Schur

Complement
Lemma

∃λ ≥ 0 :

[
1− λ aTB − bT

λI AB
Ba− b BA λI

]
� 0 ⇔ ∃λ :

[
1− λ aTB − bT

λI AB
Ba− b BA I

]
� 0

3.183

♣ Conclusions, problem (O):
♠ Let X be a union of finitely many ellipsoids. The problem of finding the smallest
ellipsoid E containing X can be posed as an explicit semidefinite program, provided that
the size to be minimized is
— either the volume Vol(E) (or the average linear size Vol1/n(E)) of E,
— or the maximal half-axis max

i
χi(E) of E,

— or
∑

iχ
p
i (E) with rational p > 0.

“Good” design variables in the problem are the parameters B, b of the inequality repre-
sentation of E.
In particular, the problem of finding the smallest ellipsoid containing a polytope given as
a convex hull of a finite set of points can be posed as an explicit semidefinite program

3.184

♣ Conclusions, problem (I):
♠ Let X be an intersection of finitely many elliptical cylinders. The problem of finding
the largest ellipsoid E contained in X can be posed as an explicit semidefinite program,
provided that the size to be maximized is
— either average linear size Vol1/n(E) of E,
— or the minimal half-axis min

i
χi(E) of E,

— or
(∑

iχ
p
i (E)

)1/p
with rational p, 0 < p ≤ 1.

“Good” design variables in the problem are the parameters A, a of the image represen-
tation of E.
In particular, the problem of finding the largest ellipsoid contained in a polytope given
by a finite list of linear inequalities can be posed as explicit semidefinite program

3.185

♣ Important Difficult Open problem: Outer Ellipsoidal approximation of intersection

Ê =
m⋂
i=1

Ei

of ellipsoids (or elliptic cylinders).
♣ Source of difficulty: Given two ellipsoids, we understand how to check efficiently
that one of them is contained in the other one, but we do not know how to check
efficiently that a given ellipsoid contains the intersection of a collection of ellipsoids.
• The latter problem reduces to describing strongly convex quadratic inequalities

xTAx+ 2bTx+ c ≤ 0 [A � 0]

which are consequences of systems

xTAix+ 2bTi x+ ci ≤ 0, 1 ≤ i ≤ m [Ai � 0 ∀i]
of strongly convex quadratic inequalities.
This problem is NP-hard, and the SDP Relaxation, based on replacing the set of all
consequences with the set of all linear consequences, fails to work properly!

3.186

Ê =
m⋂
i=1

Ei, Ei: ellipsoids

♣ There are several interesting “ad hoc” approximations of the smallest in volume Outer
Ellipsoidal approximation of Ê. In all schemes, one builds efficiently two similar to each
other concentric ellipsoids E, E which “bracket” Ê:

E ⊂ Ê ⊂ E,
and guarantees certain bounds on the similarity ratio θ of the “brackets”.

3.187

• One scheme allows to ensure θ ≤ n and is based on the following nice fact:
Fritz John Theorem: For every convex compact set X ⊂ Rn with a nonempty interior,
there exists a unique smallest volume ellipsoid Eout containing X, same as there exists
a unique largest volume ellipsoid Ein contained in X.
When shrinking Eout to its center with the coefficient n, one gets an ellipsoid which is
contained in X, and when enlarging Ein by factor n (keeping the center fixed), one gets
an ellipsoid which contains X.
When X has a symmetry center, the shrinkage/enlargement by factor n can be replaced
with shrinkage/enlargement by factor

√
n.

We would like to build Eout, but we do not know how to do it efficiently. However, we
do know how to build efficiently Ein. Building Ein and enlarging it by factor n, we, by
Fritz John Theorem, get an ellipsoid containing Ê, the ratio of the linear sizes of the
resulting “brackets” being n.

3.188

• Another scheme allows to ensure θ ≤ m + 2
√
m (non-optimality in volume by factor

≤ (m+ 2
√
m)n). Without essential loss of generality, we can assume that

Ei = {x : ‖Bix− bi‖2
2 ≤ 1}

Ê is bounded, and int Ê 6= ∅. We form the analytical barrier for Ê – the explicit convex
function

F (x) = −
∑

i
ln(1− ‖Bix− bi‖2

2)

with the domain int Ê, solve the convex optimization problem

x∗ = argmin
x∈int Ê

F (x)

(this can be done efficiently) and set

E = {x : (x− x∗)T∇2F (x∗)(x− x∗) ≤ 1},
E = {x : (x− x∗)T∇2F (x∗)(x− x∗) ≤ (m+ 2

√
m)2}

3.189

♣ In Outer Ellipsoidal approximation of intersection of ellipsoids, SDP Relaxation “re-
covers its power” when all the ellipsoids in the intersection have a common center
(w.l.o.g., 0). In fact, it works well when the set to be approximated is an ellitope:

Ê = {x ∈ Rn : ∃(t ∈ T , y) : x = Py, yTSiy ≤ ti, i ≤ m}
where Si � 0,

∑
i Si � 0, and T ⊂ Rm

+ is a convex compact set intersecting intRm
+ and

monotone: whenever 0 ≤ t′ ≤ t with t ∈ T , one has t′ ∈ T .
Note: When P = I and T = [0,1]m, Ê = {x : xTSix ≤ 1, i ≤ m} is the intersection of
ellipsoids/elliptic cylinders.
♠ Let Ê be ellitope. Observe that the optimal circumscribed ellipsoid is centered at the
origin.
Indeed, if

C+ ≡ {x : ‖Bx− b‖2
2 ≤ 1} ⊃ Ê,

then, due to symmetry of Ê, we have
C− ≡ {x : ‖Bx+ b‖2

2 ≤ 1} ⊃ Ê
as well, whence, due to the convexity of the set {(P, p) : C(P, p) ⊃ Ê}, we have

C ≡ {x : ‖Bx‖2
2 ≤ 1} ⊃ Ê,

and C has the same size as C+ and C−.

3.190

Ê = {x ∈ Rn : ∃(t ∈ T , y) : x = Py, yTSiy ≤ ti, i ≤ m}
[
Si � 0,

∑
i Si � 0

]
Fact: the minimum size circumscribed ellipsoid is centred at the origin

⇒ the Outer Ellipsoidal approximation problem for Ê is to minimize a desired size
Size(EB) of ellipsoid EB = {x : xTB2x ≤ 1} over B � 0 satisfying the constraint

xTB2x ≤ 1 ∀x ∈ Ê, that is, the constraint

1 ≥ Opt(B) := max
x∈Ê

xTB2x = max
y,t

{
yTP TB2Py : yTSiy ≤ ti, i ≤ m, t ∈ T

}
♣ For the sake of definiteness, we restrict ourselves with the sizes Size(EB) as follows:
• Vol1/n(EB) – average linear size of EB
• maximum maxi χi(EB) of the half-axes χi(EB) of EB
•
∑

i χ
p
i (EB) with p > 0

♣ By what we know on Semidefinite Relaxation on ellitopes,

Opt(B) ≤ Opt+(B) := min
{
φT (λ) : P TB2P �

∑
i λiSi, λ ≥ 0

}[
φT (λ) = maxt∈T λT t : support function of T

]
and Opt+(B) ≤ 3 ln(

√
3m)Opt(B).

3.191

Conclusion: The difficult problem
SizeOpt = minB

{
Size(EB) : B � 0,1 ≥ Opt(B) := maxy,t{yTP TB2Py : yTSiy ≤ ti, i ≤ m}

}
of Outer ellipsoidal approximation of ellitope Ê can be approximated by the efficiently
solvable problem

Size+ = minB
{

Size(EB) : B � 0,1 ≥ Opt+(B) := minλ
{
φT (λ) : λ ≥ 0, P TB2P �

∑
i
λiSi
}}

⇔ Size+ = minB,λ
{

Size(EB) : B � 0, P TB2P �
∑

i
λiSi, λ ≥ 0, φT (λ) ≤ 1

}
⇔ Size+ = minB,λ

{
Size(EB) : B � 0,

[∑
i
λiSi P TB

BP I

]
� 0, λ ≥ 0, φT (λ) ≤ 1

}
(∗)

• The approximation is safe: whenever B, λ is feasible for (∗), the ellipsoid EB = {x :

xTB2x ≤ 1} contains Ê ⇒ the B-component B∗ of optimal solution to (∗) yields ellipsoid

EB∗ ⊃ Ê of size Size+

• The approximation is reasonably tight: setting ϑ =
√

3 ln(
√

3m), it holds Size+ ≤
ϑκSizeOpt, where
• κ = 1 when Size(EB) is the maximum of half-axes χi(EB) of the ellipsoid EB or its
average linear size Vol1/n(EB),
• κ = p when Size(EB) is

∑
i χ

p
i (EB), p > 0.

Note: When φT and Size(·) are SDr, (∗) reduces to SDP.

3.192

Ellipsoidal Approximation and Polarity

Preliminaries on Polarity. Let X ⊂ Rn be a closed convex set containing the origin.
The polar of X is the set

X∗ = {y ∈ Rn : yTx ≤ 1 ∀x ∈ X}.
Fact 0: The polar X∗ of a closed convex set X containing the origin is a closed convex
set containing the origin, and twice taken, the polar recover the original set:

(X∗)∗ = X.

— Taking polars reverses inclusion: if X and Y are two closed convex sets containing
the origin, then X ⊂ Y iff Y∗ ⊂ X∗.
— Taking polar preserves symmetry w.r.t. the origin.

Fact I: The polar X∗ of a closed convex set X containing the origin is bounded if and
only if 0 ∈ intX.

3.193

Fact II: [finite-dimensional Hahn-Banach Theorem] Let X ⊂ Rn be a closed convex
set with 0 ∈ intX and L be a linear subspace in Rn. Then the polar of X ∩L taken with
respect to L – the set

X∗,L = {y ∈ L : yTx ≤ 1 ∀x ∈ X ∩ L}
is the orthogonal projection of the polar X∗ of X onto L:

X∗,L = {y ∈ L : ∃z ∈ L⊥ : y + z ∈ X∗}
More traditional formulation: A linear form on L does not exceed 1 on X ∩ L iff it can
be extended from L onto Rn to a linear form which does not exceed 1 on X.

3.194

Examples of polars
• Polar of polytope X = {x ∈ Rn : aTi x ≤ 1, i ≤ m} is the polytope X∗ = Conv{a1, ..., am}.
Indeed, by LP Duality

max
x
{yTx : −1 ≤ aTi x ≤ 1, i ≤ m} = min

λ,µ
{
∑

i λi +
∑

i µi :
∑

i λiai −
∑

i µiai = y, λ ≥ 0, µ ≥ 0}

• Polar of full-dimensional ellipsoid X = {x : xTAx}, A � 0, centered at the origin, is the
ellipsoid X∗ = {y : yTA−1y ≤ 1}
Indeed,

maxx{yTx : xTAx ≤ 1} = maxu=A1/2x{yTA−1/2u : uTu ≤ 1} = ‖A−1/2y‖2

⇒{y : maxx{yTx : xTAx ≤ 1} ≤ 1} = {y : ‖A−1/2y‖2 ≤ 1} = {y : yTA−1y ≤ 1}

• Polar of ”flat” centered at the origin ellipsoid X = {[u; v] ∈ Rp×Rq : uTAu ≤ 1, v = 0},
where A is positive definite p× p matrix, is the elliptic cylinder {X∗ = {[w; z] ∈ Rp ×Rq :
wTA−1w ≤ 1}
• Polar of ellitope X = {x : ∃(t ∈ T , y) : x = Py, yTS

1/2
i y ≤ ti, i ≤ m} is

X∗ =

ξ : ∃(p, s, r, {zi, i ≤ m}) :

∑
i S

1/2
i zi = P Tξ, ‖zi‖2 ≤ si, i ≤ m

s2
i ≤ piri, i ≤ m, p ≥ 0, r ≥ 0∑
i ri + φT (p) ≤ 1

3.195

♠ Situation: We want to approximate by ellipsoids symmetric w.r.t. the origin convex
body X ⊂ Rn (”convex body” meaning a closed and bounded convex set with a nonempty
interior).
Note: By the above facts, the polar of centered at the origin convex body itself is
centered at the origin convex body.
Note: When X is centered at the origin convex body, for all standard sizes of ellipsoids,
when finding the largest (the smallest) ellipsoid contained in (resp., containing) X ∩ L,
we lose nothing when restricting ourselves with ellipsoids centered at the origin.

3.196

Note: When A � 0, volumes of the ellipsoids A = {x : xTAx ≤ 1} and A∗ = {y : yTA−1y ≤
1}, same as half-axes of these ellipsoids, are reciprocals of each other.
Conclusion: When X is a symmetric w.r.t. the origin convex body, basic problems
(O)/(I) associated with X are equivalent to “swapped” problems (I)/(O) associated
with the polar X∗ of X, namely
— finding the largest radius Euclidean ball contained in X is equivalent to finding the
smallest radius Euclidean ball containing X∗;
— finding the largest volume ellipsoid contained in X is equivalent to finding the small-
est volume ellipsoid containing X∗.

3.197

Example A: As we know, when X is a symmetric w.r.t. the origin convex body given
as X = {x : −1 ≤ aTi x ≤ 1, i ≤ m}, the problem of finding the largest radius ball (or the
largest volume ellipsoid) contained in X is efficiently solvable via Semidefinite Program-
ming
⇔When Y is a symmetric w.r.t. the origin convex body given as X = Conv{±a1,±a2, ...,±am},
the problem of finding the smallest radius ball (or the smallest volume ellipsoid) con-
taining X is efficiently solvable via Semidefinite Programming

3.198

Example B: As we know, when X is symmetric w.r.t. the origin convex body given
as X = Conv{±a1,±a2, ...,±am}, the problem of finding the largest radius ball (or the
largest volume ellipsoid) contained in X can be difficult.
⇔When X is symmetric w.r.t. the origin convex body given as X = {x : −1 ≤ aTi x ≤ 1, i ≤ m},
the problem of finding the smallest radius ball (or the smallest volume ellipsoid) con-
taining X can be difficult.

3.199

♠ Assume that X = {x : −1 ≤ aTi x ≤ 1, i ≤ m} ⊂ Rn is bounded. The problem of Inner
ellipsoidal approximation of X is easy, but the problem of Outer ellipsoidal approximation
can be difficult.
But: X is an ellitope: X = {x : xT [aiaTi]x ≤ 1, i ≤ m},, so that semidefinite relaxation
provides a tight efficiently verifiable sufficient condition for the ellipsoid {xTQx ≤ 1} with
Q � 0 to contain X, namely, the condition

∃λ ≥ 0 : Q �
∑

iλiaia
T
i &

∑
iλi ≤ 1.

Specifically, when the condition is satisfied, the ellipsoid {x : xTQx ≤ 1} does contain X,
and when it is violated, the shrinkage {x : xTQx ≤ θ−2} of the ellipsoid with “moderate”
θ: θ = 3 ln(

√
3m) does not contain X

⇒An explicit efficiently solvable semidefinite program

Opt = max
ρ,λ

{
ρ : ρIn �

∑
i

λiaia
T
i : λ ≥ 0,

∑
i

λi ≤ 1

}
(∗)

is a safe tractable approximation of the problem of finding the minimum of radii of balls
containing X: whenever ρ, λ is a feasible solution to (∗), the centered at the origin ball
of radius 1/

√
ρ contains X. This approximation is tight: 1/

√
Opt is within the factor√

3 ln(
√

3m) of the minimum of radii of balls containing X.
Recall that similar result holds true for every ellitope X.

3.200

Note: “Safe efficiently solvable tight approximation” can be built for the problem of
finding the smallest volume ellipsoid containing X. This approximation reads

Opt = max
ρ,Q,λ

{
ρ : ρ ≤ [Det(Q)]1/n,0 � Q �

∑
i

λiaia
T
i : λ ≥ 0,

∑
i

λi ≤ 1

}
.

The ellipsoid {x : xTQx ≤ 1} yielded by the Q-component of a feasible solution to the
problem contains X, its volume is ≤ ρ−n/2, and Opt−n/2 is within factor [3 ln(

√
3m)]n/2

of the smallest of volumes of ellipsoids containing X.
By the equivalence we have established, when X = Conv{±a1, ...,±am} ⊂ Rn has a
nonempty interior, the problem of finding the largest radius ball (or the largest volume
ellipsoid) contained in X admits safe efficiently solvable semidefinite approximation with
the same as above tightness guarantees.

3.201

♠ Along with the problems of Outer/Inner ellipsoidal approximation of centered at the
origin convex body X, an important problem is approximating the cross-sections of X
with linear subspace L of dimension p < n by “flat” (p-dimensional) ellipsoid.
The complexity of these problems depends on how X is given.
♠ When X = {x ∈ Rn : −1 ≤ aTi x ≤ 1, i ≤ m}, X ∩ L admits similar representation, and
we can apply the techniques we already have; in this case,
— problem of finding the largest radius ball (or the largest p-dimensional volume ellip-
soid) contained in X ∩ L is efficiently solvable;
— problem of finding the smallest radius ball (or the smallest p-dimensional volume)
containing X ∩ L admits safe and tight semidefinite approximation.

3.202

♠ When X = Conv{±a1, ...,±am},
— the problem of finding the smallest radius ball (or the smallest p-dimensional volume
ellipsoid) containing X ∩ L is not known to have tight safe tractable approximation.
What does have such an approximation, is the problem of finding the smallest radius ball
(or the smallest p-dimensional volume ellipsoid) containing the orthogonal projection of
X onto L (which for L = Rn is the same as finding largest ball/ellipsoid contained in X)

— the problem of finding the largest radius ball (or the largest p-dimensional volume
ellipsoid) contained in X ∩ L still admits tight safe tractable approximation.
Indeed, assuming w.l.o.g. that L is the linear span of the first p basic orths, centered
at the origin ellipsoid E = {u ∈ L : uTQu ≤ 1} (Q is positive definite p × p matrix) is
contained in X ∩ L is and only if

E∗ = {[w; z] ∈ Rp ×Rn−p : wTQ−1w ≤ 1}
contains X∗ = {y : −1 ≤ aTi y ≤ 1, i ≤ m}, which in turn happens if and only if the
quadratic form

[w; z]T
[
Q−1

]
[w; z]

does not exceed 1 everywhere on X∗ = {y : −1 ≤ aTi y ≤ 1, i ≤ m}. The latter restriction
on Q, same as in the case of L = Rn, can be safely and tightly approximated via
Semidefinite Relaxation.

3.203

Inner and Outer Ellipsoidal Approximations of Sums of Ellipsoids

Problems of interest: Given m full-dimensional ellipsoids W1, ...,Wm in Rn, find the
best in the volume inner (problem (I)) and outer (problem (O)) ellipsoidal approximations
of the arithmetic sum

W = {x = w1 + w2 + ...+ wm : wi ∈Wi, i = 1, ...,m}
of the ellipsoids W1, ...,Wm.
♠ Note: When shifting one of the sets A,B, ..., Z by a vector a, the arithmetic sum
A+B + ...+ Z of the sets is shifted by the same vector a.
⇒ We may assume w.l.o.g. that all the ellipsoids Wi are centered at the origin:

Wi = {x ∈ Rn : xTZix ≤ 1} [Zi � 0].

In this case the solutions to (I) and (O) also can be sought among the ellipsoids centered
at the origin.

3.204

Outer Ellipsoidal Approximation of Sum of Ellipsoids

Observation: Ellipsoid

E = {x : xTZx ≤ 1} [Z � 0]

contains the arithmetic sum of ellipsoids

Wi = {x : xTZix ≤ 1}, i = 1, ...,m

iff

max
u=[u1;...;um]

{
(u1 + ...+ um)TZ(u1 + ...+ um)︸ ︷︷ ︸

uTM[Z]u

:
(ui)TZiu

i︸ ︷︷ ︸
uTMiu

≤ 1,

i = 1, ...,m

}
≤ 1M[Z] =

 Z Z · · ·
Z . . . · · ·
... ... Z

 ,M1 =

 Z1

 , ...,Mm =

Zm

♠ Applying Semidefinite Relaxation, we arrive at the following conservative approxima-
tion of (O):

min
Z,µ

{
Det−1/2(Z) :

Z � 0, µ ≥ 0,
∑

iµi ≤ 1
M[Z] �

∑
iµiMi

}
(∗)

♠ Matrices Mi are positive semidefinite and commute with each other. Applying (corol-
lary of) Nesterov’s π

2
Theorem, it is easily seen that the optimal solution to (∗) yields

an optimal, up to factor
(
π
2

)n/2
, solution to (O).

3.205

Inner Ellipsoidal Approximation of Sum of Ellipsoids

♣ Observation: An ellipsoid
E = {x = Au : uTu ≤ 1}

is contained in the sum of ellipsoids
Wi = {x = Aiu : uTu ≤ 1}, i = 1, ...,m

iff for every vector ξ one has

‖ATξ‖2 ≤
∑

i
‖ATi ξ‖2. (∗)

Proof. Let P , Q be closed nonempty convex sets. From Separation Theorem it
immediately follows that

P ⊂ Q⇔ max
x∈Q

ξTx ≥ max
x∈P

ξTx ∀x.

With P = E, we have

max
x∈P

ξTx = max
u
{ξTAu : uTu ≤ 1} = ‖ATξ‖2.

With Q = W1 + ...+Wm, we have

max
x∈Q

ξTx = max
u1,..,um

{
ξT [A1u1 + ...+Amum] : ‖ui‖2 ≤ 1 ∀i

}
=
∑

i‖ATi ξ‖2.

Thus, E ⊂W1 + ...+Wm if and only if (∗) takes place.

3.206

‖ATξ‖2 ≤
∑

i
‖ATi ξ‖2. (∗)

Observation I: Given matrices Ai, the simplest way to generate matrix A satisfying (∗)
is to set

A =
∑

i
AiXi, ‖Xi‖ ≤ 1 (∗∗)

Observation II: Let A = S +C with symmetric positive definite S and skew-symmetric
C. Then

Det(A) = |Det(A)| ≥ Det(S)

Indeed, by “scaling”

A = S + C 7→ Â = S−1/2AS−1/2 = I + S−1/2CS−1/2︸ ︷︷ ︸
Ĉ

we reduce the general case to the one where S = I. Here the statement is evident: since
the eigenvalues of skew-symmetric real matrix C are pairs of conjugate purely imaginary
complex numbers ±iν`, we have

Det(A) = Det(I + C) =
∏̀

[(1− iν`)(1 + iν`)]

=
∏̀

[1 + ν2
`] ≥ 1 = Det(I).

3.207

♣ We arrive at the following conservative approximation of (I):

max
{Xi}

{
Det1/n

(
1

2

∑
i
[XT

i Ai +AiXi]

)
:

S︷ ︸︸ ︷
1

2

∑
i
[XT

i Ai +AiXi] � 0[
I Xi

Xi I

]
� 0︸ ︷︷ ︸

≡‖Xi‖≤1

∀i

}
(P)

where Ai � 0 are the matrices from the image representations of the ellipsoids Wi.
Every feasible solution {Xi} of (P) produces ellipsoid

E = {x = Au : uTu ≤ 1}, A =
∑

i
AiXi

which is contained in W1 + ...+Wm, and the volume of this ellipsoid is at least

Det

(
1

2

∑
i
[XT

i Ai +AiXi]

)
.

3.208

Problems (O) and (I) in the Co-Axial Case

♣ Observation: Problems (O) and (I) (same as all problems of “optimal in volume”
ellipsoidal approximation) admit certain symmetry. Specifically, let

y = Qx

be a nondegenerate linear transformation of Rn. Such a transformation multiplies the
volumes of all sets by the same factor |Det(Q)|; consequently, problems (I)/(O) involving
ellipsoids

Wi = {x : xTZix ≤ 1} [Zi � 0]

can be reduced to similar problems involving the images

Ŵi = {y : (Q−1y)TZi(Q
−1y) ≤ 1} = {y : yT [Q−TZiQ

−1]︸ ︷︷ ︸
Ẑi

y ≤ 1}

of ellipsoids Wi under this transformation.

3.209

♠ Let us call ellipsoids Wi co-axial, if, with a proper choice of Q, the matrices Ẑi commute
with each other.
♦ Co-axiality is equivalent to the existence of a basis (not necessarily orthogonal) where
all quadratic forms xTZix become diagonal:

xTZix =
∑

jν
i
jξ

2
j (x)

[ξj(x) : coordinates of x in the basis]

♦ Linear Algebra says that every two (full-dimensional) ellipsoids W1, W2 are co-axial.

Indeed, if Wi = {x : xTZix ≤ 0} and Zi � 0, i = 1,2, then, setting Q = Z
1/2
1 , we arrive at

commuting matrices

Ẑ1 = Z
−1/2
1 Z1Z

−1/2
1 = I, Ẑ2 = Z

−1/2
1 Z2Z

−1/2
1 .

3.210

♠ We have seen that in the co-axial case problems (I) and (O) can be reduced to similar
problems for the sum of ellipsoids given by diagonal matrices:

Wi = {x :
∑

j
νijx

2
j ≤ 1} [νij > 0]

It turns out that in the case of ellipsoids Wi given by diagonal matrices, the tractable
approximations of (O) and (I) we have presented yield exactly optimal solutions to the
respective problems.
This is a corollary of simple and powerful Symmetry Principle.

3.211

Symmetry Principle: Consider a convex and solvable optimization problem

min
x∈X

f(x) (P)

and assume that it admits a finite group G of symmetries, that is,
• G is a finite subset of the group Ln of nonsingular n× n matrices,
• G is a sub-group of Ln: U ∈ G⇒ U−1 ∈ G, U, V ∈ G⇒ UV ∈ G and
• every U ∈ G is a symmetry of (P):

U(X) := {Ux : x ∈ X} = X, f(Ux) = f(x) ∀x ∈ X.
Then (P) admits a “G-symmetric” optimal solution x∗:

Ux∗ = x∗ ∀U ∈ G.
Proof. Let x̄ be an optimal solution to (P). Since (P) is G-symmetric, every point of
the form

Ux̄, U ∈ G
is an optimal solution to (P) along with x̄. Since (P) is convex, it follows that the point

x∗ =
1

Card(G)

∑
U∈G

Ux̄ (∗)

also is an optimal solution to (P); this solution is clearly G-symmetric.

3.212

Remark: Assuming X closed, the statement remains valid when G is a compact, rather
than finite, group of symmetries of (P). The proof remains essentially the same, with
averaging (∗) replaced by integration over the invariant probabilistic measure on G.

3.213

From Symmetry Principle to Co-Axial (O)/(I). Let ellipsoids Wi be given by diagonal
matrices:

Wi = {x :
∑

j
νijx

2
j ≤ 1} [νij > 0]

Consider problem (O):

min
B,b

{
Det−1(B) ≡

∏
j

λ−1
j (B) : C(B, b) ⊃W1 + ...+Wm︸ ︷︷ ︸

W

, B � 0

}
(O)

The problem is convex and solvable (the latter – by Fritz John Theorem). Let J be a
transformation of Rn of the form

x 7→ (ε1x1, ε2x2, ..., εnxn), εj = ±1.

Since Wi are given by diagonal matrices, this transformation keeps W invariant and
therefore maps an ellipsoid C(B, b) containing W into another ellipsoid also containing
W ; this “other ellipsoid” is C(JBJ, Jb). Thus, the feasible set of convex and solvable
problem (O) is invariant under the transformations

J : (B, b) 7→ (JBJ, Jb) ≡ (JTBJ, Jb)

generated by 2n “reflections” J. The transformations J clearly form a finite sub-group
of the group of orthogonal rotations of the Euclidean space Sn ×Rn where the feasible
set of (O) lives, and that these transformations preserve the objective in (O). Applying
Symmetry Principle, we conclude that (O) admits an optimal solution (B∗, b∗) which
remains invariant under all transformations of the form

(B, b) 7→ (JTBJ, Jb), J = Diag{ε1, ..., εn}, εi = ±1,

which clearly is possible iff b∗ = 0 and B∗ is diagonal.

3.214

Wi = {x :
∑

jν
i
jx

2
j ≤ 1} [νij > 0]

min
B,b

{
1

Det(B)
≡
∏
j

λ−1
j (B) : C(B, b) ⊃W1 + ...+Wm, B � 0

}
(O)

We have seen that when solving (O), we lose nothing by assuming that b = 0 and B is
diagonal, so that (O) is equivalent to the problem

min
β

{∏
j

β−1
j : β > 0,

∑
jβjx

2
j ≤ 1 ∀(x = x1 + ...+ xm :

∑
jν
i
j (xij)

2︸ ︷︷ ︸
yij

)

}

⇔ min
β>0

{∏
j

β−1
j :

∑
jβj

(∑
j

√
yij

)2
≤ 1 ∀

(
{yij ≥ 0} :

∑
jν
i
jy
i
j ≤ 1,

1 ≤ i ≤ m

)} (O′)

We claim that
(!) A vector β > 0 is feasible for (O′) if and only if
there exists µ ≥ 0 such that M[Diag{β}] �

∑
iµiMi.

(!) says that the matrices Diag{β} associated with feasible solutions to (O′) are feasible
solutions to the tractable approximation of (O) we have built.
⇒Optimal solution to our approximation of (O) is optimal solution of (O) as well.

3.215

min
β>0

{∏
j

β−1
j :

∑
jβj

(∑
j

√
yij

)2
≤ 1 ∀

(
{yij ≥ 0} :

∑
jν
i
jy
i
j ≤ 1,1 ≤ i ≤ m

)}
(O′)

Claim: (!) A vector β > 0 is feasible for (O′) if and only if there exists µ ≥ 0 such that∑
iµi ≤ 1 and

M[Diag{β}] �
∑

i
µiMi.

Mi =

 Diag{νi}

Proof of (!): The only nontrivial part of (!) is the claim that (!!) if β > 0 is feasible
for (O′), then there exists µ ≥ 0 such that...
By Semidefinite Duality, the property “exists µ ≥ 0 such that...” is exactly equivalent
to the validity of the implication

Y ∈ Smn+ ,Tr(MiY) ≤ 1, 1 ≤ i ≤ m⇒ Tr(M[Diag{β}]Y) ≤ 1 (1)

so that to prove (!!) is the same as to prove that
(!!!) If β is feasible for (O′), then (1) takes place.

To prove (!!!), let β be feasible for (O′), and let Y satisfy the premise in (1). Let us
split Y into m2 blocks Y ik of the size n× n each.

3.216

Situation: β is feasible for

min
β>0

{∏
j

β−1
j :

∑
jβj

(∑
j

√
yij

)2
≤ 1 ∀

(
{yij ≥ 0} :

∑
jν
i
jy
i
j ≤ 1,1 ≤ i ≤ m

)}
(O′)

Y = [Y k` ∈ Rn×n]k,`≤m satisfies the premise in

Y ∈ Smn+ ,Tr(MiY) ≤ 1, 1 ≤ i ≤ m⇒ Tr(M[Diag{β}]Y) ≤ 1 (1)

Goal: to justify the validity of the conclusion in (1).

Taking into account that Y � 0, we have |Y ik
jj | ≤

√
Y ii
jjY

kk
jj , whence

Tr(M[Diag{β}]Y) =
∑m

i,k=1

∑n
j=1βjY

ik
jj ≤

∑m
i,k=1

∑n
j=1βj

√
Y ii
jjY

kk
jj =

∑n
j=1βj

(∑m
i=1

√
Y ii
jj

)2

Since Y satisfies the premise in (1), we have

Tr(MiY) ≡
∑

j
νijY

ii
jj ≤ 1,

whence, since β is feasible for (O′),

Tr(M[Diag{β}]Y) =
∑n

j=1
βj

(∑m

i=1

√
Y ii
jj

)2

≤ 1,

as required in the conclusion of (1). �

3.217

♣ Let ellipsoids Wi be given by diagonal matrices:

Wi = {x :
∑

jν
i
jx

2
j ≤ 1} [νij > 0]

⇒Wi = {x = Diag{θi}︸ ︷︷ ︸
Ai

u : uTu ≤ 1} [θij = (νij)
−1/2]

Problem (I). In the case of diagonal matrices Ai � 0, our approximation scheme recovers
exactly optimal ellipsoid contained in W1 + ...+Wm. Moreover, this ellipsoid is just

W = {x = [A1 + ...+Am]︸ ︷︷ ︸
A

u : uTu = 1}. (!)

Indeed, ellipsoid (!) is given by our approximation scheme:

A =
1

2

∑
i

[
XT
i Ai +AiXi

]
� 0 [Xi = I, ‖Xi‖ ≤ 1]

thus, the ellipsoid is contained in W1 + ...+Wm.
On the other hand, it is clear that the set W1 + ...+Wm is contained in the box

{x : |xj| ≤ θ1
j + θ2

j + ...+ θmj , j = 1, ..., n},

so that the largest volume ellipsoid contained in this box (which is exactly W !) can be
only larger than the largest volume ellipsoid contained in W1 + ...+Wm.

3.218

♣ Application: On-line approximation of reachable sets.

z(t+ 1) = Atz(t) +Btu(t) + ft, z(0) = z0 (1)

♣ The set ZT of all states z(T) of (1) reachable with norm-bounded control:

‖u(t)‖2 ≤ ρt, t = 0,1, ..., T − 1

is the sum of T ellipsoids and thus can be approximated from inside and from outside
by ellipsoids via our techniques. We can further “trade quality for simplicity” and look
at on-line approximations, where, given ellipsoidal approximations of Zt:

Et ⊂ Zt ⊂ Et

and observing that

Zt+1 = AtZ
t + {Btu+ ft : uTu ≤ ρ2

t },
we conclude that

AtEt + {Btu+ ft : uTu ≤ ρ2
t } ⊂ Zt+1 ⊂ AtEt + {Btu+ ft : uTu ≤ ρ2

t }
Thus, setting

Et+1 = largest volume ellipsoid ⊂ AtEt + {Btu+ ft : uTu ≤ ρ2
t }

Et+1 = smallest volume ellipsoid ⊃ AtEt + {Btu+ ft : uTu ≤ ρ2
t }

we get (non-optimal!) “greedy” inner and outer ellipsoidal approximations of Zt+1 by
solving recursively simple problems of approximating sums of just two ellipsoids (co-axial
case!).

3.219

d
dt

[
x1(t)
x2(t)

]
=

[
−0.8147 −0.4163
0.8167 −0.1853

]
︸ ︷︷ ︸

P

[
x1(t)
x2(t)

]
+
[

u1(t)
0.7071u2(t)

]
,

[
x1(0)
x2(0)

]
=
[

0
0

]
, ‖u(t)‖2 ≤ 1

⇒
z(k + 1) = exp{P∆t}︸ ︷︷ ︸

A

z(k) +

 ∆t∫
0

exp{As}
[

1 0
0 0.7071

]
ds

︸ ︷︷ ︸

B

u(k), z(0) =
[

0
0

]
, [∆t = 0.01]

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Outer and inner on-line approximation of Zt, t = 10`, ` = 1, ...,10, and 4 sample trajectories

3.220

♣ A continuous time Linear Dynamical System

ż = A(t)z +B(t)u(t) + f(t), t ≥ 0
z(0) ∈ E0 ≡ {z : zTGiniz ≤ 1} [Gini � 0]

(∗)

with norm-bounded control:

‖u(t)‖2 ≤ 1 ∀t,
can be viewed as a limit of discrete time systems with norm-bounded control. The
above discrete time greedy on-line policies for building ellipsoidal approximations yield
continuous-time counterparts as follows:
We associate with (∗) ordinary differential equations for matrix-valued functions Gt and
Wt:

d
dt
Gt = −AT(t)Gt −GtA(t)−

(
n

Tr(GtB(t)BT (t))

)1/2

GtB(t)BT(t)Gt −
(

Tr(GtB(t)BT (t))
n

)1/2

Gt, t ≥ 0,

G0 = Gini;
d
dt
Wt = −AT(t)Wt −WtA(t)− 2W 1/2

t (W 1/2
t B(t)BT(t)W 1/2

t)1/2W
1/2
t , t ≥ 0,

W0 = Gini.

Let also zt be the “central trajectory”:

d

dt
zt = A(t)zt + f(t), z0 = 0.

Then Gt � 0, Wt � 0 for all t ≥ 0, and for all t one has

{z : (z − zt)TWt(z − zt) ≤ 1} ⊂ Zt ⊂ {z : (z − zt)TGt(z − zt) ≤ 1}
where Zt is the set of all possible states of (∗) at time t.

3.221

−200 0 200 400 600 800 1000
−100

0

100

200

300

400

500

600

700

800

900

“Spiral”
d
dt

[
x1(t)
x2(t)

]
=
[

cos(t) − sin(t)
sin(t) cos(t)

] [
x1(t)
x2(t)

]
+ u(t)

[
cos(t)
sin(t)

]
+
[

10
10

]
x(0) = 0, |u(·)| ≤ 1, 0 ≤ t ≤ 30

3.222

−150 −100 −50 0 50 100 150 200 250 300 350

−50

0

50

100

150

200

250

300

“Snake”
d
dt

[
x1(t)
x2(t)

]
=
[

0 − sin(t)
sin(t) 0

] [
x1(t)
x2(t)

]
+ u(t)

[
cos(t)
sin(t)

]
+
[

10
10

]
x(0) = 0, |u(·)| ≤ 1, 0 ≤ t ≤ 30

3.223

−3 −2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

“Pendulum”
d
dt

[
x1(t)
x2(t)

]
=
[

0 1
−1 0

] [
x1(t)
x2(t)

]
+ u(t)

[
0

0.05

][
m

d2

dt2
x1(t) = −x1(t) + 0.05u(t)
x2(t) = d

dt
x1(t)

]
x1(0) = 0, x2(0) = 1, |u(·)| ≤ 1, 0 ≤ t ≤ 30

3.224

IV. COMPUTATIONAL TRACTABILITY

OF

CONVEX PROGRAMMING

A Mathematical Programming problem is

min
x

{
p0(x) : x ∈ X(p) ⊂ Rn(p)

}
(p)

• n(p) is the design dimension of problem (p);
• X(p) ⊂ Rn is the feasible domain of the problem;
• p0(x) : Rn → R is the objective of (p).
E.g., a conic program

min
x

{
cTx : Ax− b ∈ K

}
, (CP)

is a Mathematical Programming program given by

X(p) = {x : Ax− b ∈ K}, p0(x) = cTx.

4.1

Definition: A Mathematical Programming program

min
x

{
p0(x) : x ∈ X(p) ⊂ Rn(p)

}
(p)

is called convex, if
• The domain X(p) of the program is a convex set;
• The objective p0(x) is convex and real valued on the entire Rn(p).
• E.g., a conic program

min
x

{
p0(x) ≡ cTx : x ∈ X(p) ≡ {x : Ax− b ∈ K}

}
is convex.

4.2

Claim: (!) Convex optimization programs are “computationally tractable”: there exist
solution methods which “efficiently solve” every convex optimization program satisfying
“very mild” computability and boundedness restrictions.
(!!) In contrast to this, no efficient universal solution methods for nonconvex Mathe-
matical Programming programs are known, and there are strong reasons to expect that
no methods of this type exist.
• To make (!) a rigorous statement, one should specify the notions of
• solution method
• efficiency

4.3

• Intuitively, a (numerical) solution method is a computer code; when solving a particular
instance of optimization problem, computer loaded with this code inputs the data of
the instance, executes the code on these data and outputs the result – a real array
representing the solution, or the message “no solution exists”.
The efficiency of such a solution method on a particular problem’s instance can be
measured by the running time of the code as applied to the data of the instance – the
of elementary operations performed by the computer when executing the code; the
less is the running time, the higher is the efficiency.
When formalizing these intuitive considerations, we should specify a number of elements:
• Model of computations: What our computer can do, in particular, what are its
“elementary operations”?
• Encoding of program instances: What are the problems we intend to solve and what
are the “data of particular instances?”
• Quality of solution: Solution of what kind we expect to get? An exactly optimal
or an approximate one? Even for simple convex programs, it would be unrealistic to
expect that the data can be converted into an exactly optimal solution in finitely many
elementary operations!

4.4

Real Arithmetics Complexity Model

Model of computations: idealized computer capable to store arbitrary many reals and
to perform exactly the following standard operations with reals:
• four arithmetic operations • comparisons
• computing elementary functions like log, exp, √ , sin,...

(idealization comes from the assumption that reals can be stored and processed exactly!)
Generic optimization problem: a family of Mathematical Programming problems of
a given “analytical structure”, like Linear, Conic Quadratic and Semidefinite Program-
ming.
Formally: a generic optimization problem P is a family of “instances” – optimization
programs

min
x

{
p0(x) : x ∈ X(p) ⊂ Rn(p)

}
(p)

where every instance (p) ∈ P is specified by a finite-dimensional data vector Data(p).
The maximum of the design dimension n(p) of an instance and the dimension of the
data vector is called the size of the instance:

Size(p) = max[n(p),dim Data(p)].

4.5

Examples:
• Linear Programming LP: collection of all possible LP programs

min
x

{
cTx : Ax ≥ b

}
[A : m× n],

the data vector of an instance being

[n;m; c; Vec(A); b]

where for A ∈Mm,n

Vec(A) = [A11;A21; ...;Am1;A12; ...;Am2; ...;A1n; , , , .;Amn].

• Conic Quadratic Programming CQP: collection of all possible conic quadratic
programs

min
x

{
cTx : ‖Dix− di‖2 ≤ eTi x− ci, i = 1, ..., k

}
[Di : mi × n]

the data vector of an instance being[
n; k;m1; ...;mk; c; Vec

([
D1 d1

eT1 c1

])
; ...; Vec

([
Dk dk
eTk ck

])]

4.6

• Semidefinite programming SDP: collection of all possible semidefinite programs

min
x

{
cTx :

n∑
i=1

xiAi −B � 0

}
[Ai ∈ Sm]

the data vector of an instance being

[n;m; c; Vec(A1); ...; Vec(An); Vec(B)] .

4.7

Accuracy of approximate solutions: Let P be a generic convex optimization problem,
meaning that all instances of P are convex programs. We assume that P is equipped
with infeasibility measure

InfeasP(x, p)

– a real-valued function of (p) ∈ P and x ∈ Rn(p) which is nonnegative everywhere, is
zero when x ∈ X(p), and is convex in x.
Note: The infeasibility measure is a part of the description of P.
• Given an infeasibility measure, we can define the notion of an ε-solution to an instance

(p) : min
x

{
p0(x) : x ∈ X(p) ⊂ Rn(p)

}
of P as a point x ∈ Rn(p) which is both ε-feasible and ε-optimal:

InfeasP(x, p) ≤ ε & p0(x)−Opt(p) ≤ ε,
where

Opt(p) ≡
{

infx∈X(p) p0(x), X(p) 6= ∅
+∞, otherwise

is the optimal value of (p).

4.8

Example: Natural infeasibility measures for LP, CQP, SDP are given by the following
construction: An instance of the generic problem P in question is a conic problem of
the form

min
x

{
cT(p)x : A(p)x− b(p) ∈ K(p)

}
(p)

The infeasibility measure is

InfeasP(x, p) = min
t

{
t ≥ 0 : A(p)x− b(p) + te[K(p)] ∈ K(p)

}
,

where e[K]∈ intK is the “central point” of cone K, specifically,
• 1 when K is the nonnegative ray R+,
• the vector [0; ...; 0; 1] ∈ Rm, when K is the Lorentz cone Lm;
• the unit matrix Im, when K = Sm+ is a semidefinite cone,
• the direct sum of the central points of the direct factors, when K is a direct product
of the just listed standard cones

4.9

• Let P be a generic optimization problem. A solution method M for P is a code for
the Real Arithmetics computer such that when loaded by M and getting on input the
data vector Data(p) of an instance (p) ∈ P and ε > 0, the computer in finitely many
operations returns
– either an n(p)-dimensional vector ResM(p, ε) which is an ε-solution to (p),
– or a correct message “(p) is infeasible”,
– or a correct message “(p) is below unbounded”.

data(p)
eps

eps−solutionReal Arithmetics Computer

Solution Method

• The complexity of a solution method M on input ((p), ε) is

ComplM(p, ε) =
of real arithmetic operations
carried out on input (Data(p), ε)

4.10

• The complexity of a solution method M on input ((p), ε) is

ComplM(p, ε) =
of real arithmetic operations
carried out on input (Data(p), ε)

• A solution method is called polynomial time (“theoretically efficient”) on P, if its
complexity is bounded by a polynomial of the size of (p) and the “number of accuracy
digits”:

∃ polynomial π : ∀(p) ∈ P ∀ε > 0 :ComplM(p, ε) ≤ π (Size(p),Digits(p, ε))

Digits(p, ε) = ln
(

Size(p)+‖Data(p)‖1+ε2

ε

)
[

Size(p) = max[n(p),dim Data(p)], ‖u‖1 =
dimu∑
i=1
|ui|

]
• A generic optimization problem P is called polynomially solvable (“computationally
tractable”), if it admits a polynomial time solution method.

4.11

• A polynomial time method:

∃ polynomial π : ∀(p) ∈ P ∀ε > 0 :ComplM(p, ε) ≤ π (Size(p),Digits(p, ε))

Digits(p, ε) = ln
(

Size(p)+‖Data(p)‖1+ε2

ε

)
[

Size(p) = max[n(p),dim Data(p)], ‖u‖1 =
∑dimu

i=1 |ui|
]

• For a polynomial time method, increasing by absolute constant factor (say, by 10)
computer’s performance, we can increase by (another) absolute constant factor the size
of instances which can be processed in a fixed time and the number of accuracy digits
to which the instances are processed in this time. In contrast to this,
• for a solution method with exponential in Size(·) complexity like

ComplM(p, ε) ≈ f(ε) exp{Size(p)}
10-fold progress in computer power allows to increase the sizes of problems solvable to
a fixed accuracy in a fixed time only by additive absolute constant ≈ 2.
• for a solution method with sublinear in 1/ε complexity like

ComplM(p, ε) ≈ f(Size(p))
1

ε

10-fold progress in computer power allows to increase the # of accuracy digits available
in a fixed time only by additive absolute constant ≈ 1.

4.12

• The complexity bound of a typical polynomial time method is just linear in the # of
accuracy digits:

ComplM(p, ε) ≤ O(1)Sizeα(p)Digits(p, ε).

For such a method, polynomially means that the “arithmetic cost” of an extra accuracy
digit is independent of the position of the digit (is it the 1-st or the 10,000-th) and is
polynomial in the dimension of the data vector.

4.13

Polynomial Solvability of Convex Programming

• We are about to prove that under “mild assumptions” a generic convex optimization
problem P is polynomially solvable.
The assumptions are
• Polynomial computability
• Polynomial growth
• Polynomial boundedness of feasible sets.

4.14

1. Polynomial computability

• We say that a generic convex optimization problem

P =
{

(p) : min
x

{
p0(x) | x ∈ X(p) ∈ Rn(p)

}}
is polynomially computable, if
1.1. There exists a code Cobj for the Real Arithmetics computer which, given on input
the data vector Data(p) of an instance (p) ∈ P and a vector x ∈ Rn(p), reports on output
the value p0(x) and a subgradient p′0(x) of the objective of (p) at x, and the # Tobj(x, p)
of operations in course of this computation is bounded by a polynomial of Size(p):

∀
(
(p) ∈ P, x ∈ Rn(p)

)
: Tobj(x, p) ≤ χSizeχ(p)

[Size(p) = max[n(p),dim Data(p)]]

From now on, χ stands for positive constants “characteristic for P” and independent of
particular choice of (p) ∈ P, ε > 0, etc.

4.15

1.2. There exists a code Ccons for the Real Arithmetics computer which, given on input
the data vector Data(p) of an instance (p) ∈ P, a vector x ∈ Rn(p) and ε > 0, reports
on output whether InfeasP(x, p) ≤ ε, and if it is not the case, returns vector e which
separates x and the set {y : InfeasP(y, p) ≤ ε}:

InfeasP(y, p) ≤ ε⇒ eTx > eTy,

and the # Tcons(x, ε, p) of operations in course of this computation is bounded by a
polynomial of Size(p) and Digits(p, ε):

∀

 (p) ∈ P
x ∈ Rn(p)

ε > 0

 : Tcons(x, ε, p) ≤ χ (Size(p) + Digits(p, ε))χ .

4.16

2. Polynomial growth

• We say that a generic convex optimization problem

P =
{

(p) : min
x

{
p0(x) : x ∈ X(p) ∈ Rn(p)

}}
is of polynomial growth, if the objectives and the infeasibility measures, as functions of
x, grow polynomially with ‖x‖1, the degree of the polynomial being a power of Size(p):

∀
(
(p) ∈ P, x ∈ Rn(p)

)
:

|p0(x)|+ InfeasP(x, p) ≤ (χ [Size(p) + ‖x‖1 + ‖Data(p)‖1])(χSizeχ

(p)) .

4.17

3. Polynomial boundedness of feasible sets

• We say that a generic convex optimization problems P has polynomially bounded
feasible sets, if the feasible set X(p) of every instance (p) ∈ P is bounded and is contained
in the centered at the origin Euclidean ball of “not too large” radius:

∀(p) ∈ P : X(p) ⊂
{
x ∈ Rn(p) : ‖x‖2 ≤ (χ [Size(p) + ‖Data(p)‖1])χSizeχ

(p) }.

4.18

♣ It is easily seen that the generic convex programs LP, CQP, SDP (same as basically
all other generic convex programs) satisfy the assumptions of polynomial computability
and polynomial growth.
At the same time, LP, CQP, SDP (and most of other generic convex programs) “as
they are” do not satisfy the assumption of polynomial boundedness. We can enforce
polynomial boundedness of feasible sets by rejecting to deal with instances where an
upper bound on the norm of a feasible solution is not stated explicitly. To this end we
pass from a generic problem P to the problem Pb with instances (p+) = ((p), R):

(p) : min
x
{p0(x) : x ∈ X(p)}

⇒ (p+) : min
x
{p0(x) : x ∈ XR(p) = {x ∈ X(p) : ‖x‖∞ ≤ R}}[

Data(p+) = (Data(p), R)
]

Note that LPb ⊂ LP, CQPb ⊂ CQP, SDPb ⊂ SDP, and the generic convex programs LPb,
CQPb, SDPb satisfy the assumption of polynomial boundedness of feasible sets (same as
the assumptions of polynomial computability and polynomial growth).

4.19

Theorem [Polynomial Solvability of Convex Programming] Let P be a generic convex
optimization problem which is

(a) polynomially computable
(b) of polynomial growth
(c) with polynomially bounded feasible sets.

Then P is polynomially solvable.

4.20

Key Component: Ellipsoid Algorithm

♣ Consider an optimization program
f∗ = min

X
f(x) (P)

• X ⊂ Rn is a closed and bounded convex set with a nonempty interior;
• f is a continuous convex function on Rn.
♠ Assume that our “environment” when solving (P) is as follows:
A. We have access to a Separation Oracle Sep(X) for X – a routine which, given on
input a point x ∈ Rn, reports whether x ∈ X, and in the case of x 6∈ X, returns a
separator – a vector e 6= 0 such that

eTx ≥ maxy∈X eTy
B. We have access to a First Order Oracle which, given on input a point x ∈ X, returns
the value f(x) and a subgradient f ′(x) of f at x:

∀y : f(y) ≥ f(x) + (y − x)Tf ′(x).
Note: When f is differentiable, one can set f ′(x) = ∇f(x).
C. We are given positive reals R, r, V such that for some (unknown) c one has

{x : ‖x− c‖2 ≤ r} ⊂ X ⊂ {x : ‖x‖2 ≤ R}
and

max
x∈X

f(x)−min
x∈X

f(x) ≤ V.

4.21

♠ Example: Consider an optimization program

min
x

{
f(x) ≡ max

1≤`≤L
[p` + qT` x] : x ∈ X = {x : aTi x ≤ bi, 1 ≤ i ≤ m

}
W.l.o.g. we assume that ai 6= 0 for all i.
♠ A Separation Oracle can be as follows: given x, the oracle checks whether aTi x ≤ bi for
all i. If it is the case, the oracle reports that x ∈ X, otherwise it finds i = ix such that
aTixx > bix, reports that x 6∈ X and returns aix as a separator. This indeed is a separator:

y ∈ X ⇒ aTixy ≤ bix< aTixx
♠ A First Order Oracle can be as follows: given x, the oracle computes the quantities
p` + qT` x for ` = 1, ..., L and identifies the largest of these quantities, which is exactly
f(x), along with the corresponding index `, let it be `x: f(x) = p`x + qT`xx. The oracle
returns the computed f(x) and, as a subgradient f ′(x), the vector q`x. This indeed is a
subgradient:

f(y) ≥ p`x + qT`xy = [p`x + qT`xx] + (y − x)Tq`x = f(x) + (y − x)Tf ′(x).

4.22

f∗ = min
X

f(x) (P)

• X ⊂ Rn is a closed and bounded convex set with a nonempty interior;
• f is a continuous convex function on Rn.
• We have access to a Separation Oracle which, given on input a point x ∈ Rn, reports
whether x ∈ X, and in the case of x 6∈ X, returns a separator e 6= 0:

eTx ≥ maxy∈X eTy
• We have access to a First Order Oracle which, given on input a point x ∈ X, returns
the value f(x) and a subgradient f ′(x) of f :

∀y : f(y) ≥ f(x) + (y − x)Tf ′(x).
• We are given positive reals R, r, V such that for some (unknown) c one has

{x : ‖x− c‖2 ≤ r} ⊂ X ⊂ {x : ‖x‖2 ≤ R}
and

max
x∈X

f(x)−min
x∈X

f(x) ≤ V.
♠ How to build a good solution method for (P)?

To get an idea, let us start with univariate case.

4.23

Univariate Case: Bisection

♣ When solving a problem min
x
{f(x) : x ∈ X = [a, b] ⊂ [−R,R]} , by bisection, we recur-

sively update localizers – segments ∆t = [at−1, bt−1] containing the optimal set Xopt.
• Initialization: Set ∆1 = [−R,R] [⊃ Xopt]

4.24

min
x
{f(x) : x ∈ X = [a, b] ⊂ [−R,R]} ,

• Step t: Given ∆t = [at−1, bt−1] ⊃ Xopt let ct be the midpoint of ∆t. Calling Separation
and First Order oracles at ct, we replace ∆t by twice smaller localizer ∆t+1.

a b c
t

1.a)

a
t−1

b
t−1

f

a bc
t

1.b)

a
t−1

b
t−1

f

c
t

2.a)

a
t−1

b
t−1

f

c
t

2.b)

a
t−1

b
t−1

f

c
t

2.c)

a
t−1

b
t−1

f

1) SepX says that ct 6∈ X and reports, via separator e,
on which side of ct X is.
1.a): ∆t+1 = [at−1, ct]; 1.b): ∆t+1 = [ct, bt−1]

2) SepX says that ct ∈ X, and Of reports, via sign[f ′(ct)],
on which side of ct Xopt is.
2.a): ∆t+1 = [ct, bt−1]; 2.b): ∆t+1 = [at−1, ct]; 2.c): ct ∈ Xopt

4.25

♠ Since the localizers rapidly shrink and X is of positive length, eventually some of search
points will become feasible, and the nonoptimality of the best found so far feasible search
point will rapidly converge to 0 as process goes on.

4.26

Opt(P) = minx∈X⊂Rn f(x) (P)

♠ Bisection admits multidimensional extension, called Generic Cutting Plane Algorithm,
where one builds a sequence of “shrinking” localizers Gt – closed and bounded convex
domains containing the optimal set Xopt of (P).
Generic Cutting Plane Algorithm is as follows:
♠ Initialization Select as G1 a closed and bounded convex set containing X and thus
being a localizer.

4.27

Opt(P) = minx∈X⊂Rn f(x) (P)

c

X

Gt
ct

X

Gt
ct

Left: ct 6∈ X (case A); right: ct ∈ X (case B). Yellow polygon: Ĝt.

♠ Step t = 1,2, ...: Given current localizer Gt,
• Select current search point ct ∈ Gt and call Separation and First Order oracles to form
a cut – to find et 6= 0 s.t. Xopt ⊂ Ĝt := {x ∈ Gt : eTt x ≤ eTt ct}.
To this end
— call SepX, ct being the input. If SepX says that ct 6∈ X and returns a separator, take
it as et (case A on the picture).
Note: ct 6∈ X ⇒ all points from Gt\Ĝt are infeasible
— if ct ∈ Xt, call Of to compute f(ct), f ′(ct). If f ′(ct) = 0, terminate, otherwise set
et = f ′(ct) (case B on the picture).
Note: When f ′(ct) = 0, ct is optimal for (P), otherwise f(x) > f(ct) at all feasible
x ∈ Gt\Ĝt

• By the two “Note” above, Ĝt is a localizer along with Gt. Select a closed and bounded
convex set Gt+1 ⊃ Ĝt (it also will be a localizer) and pass to step t+ 1.

4.28

Opt(P) = minx∈X⊂Rn f(x) (P)

♣ Summary: Given current localizer Gt, selecting a point ct ∈ Gt and calling the
Separation and the First Order oracles, we can
♠ in the productive case ct ∈ X, find et such that

eTt (x− ct) > 0⇒ f(x) > f(ct)

♠ in the non-productive case ct 6∈ X, find et such that

eTt (x− ct) > 0⇒ x 6∈ X

⇒ the set Ĝt = {x ∈ Gt : eTt (x− ct) ≤ 0} is a localizer

♣ We can select as the next localizer Gt+1 any set containing Ĝt.
♠ We define approximate solution xt built in course of t = 1,2, ... steps as the best –
with the smallest value of f – of the feasible search points c1, ..., ct built so far.
If in course of the first t steps no feasible search points were built, xt is undefined.

4.29

Opt(P) = minx∈X⊂Rn f(x) (P)

♣ Analysing Cutting Plane algorithm
• Let Vol(G) be the n-dimensional volume of a closed and bounded convex set G ⊂ Rn.
Note: For convenience, we use, as the unit of volume, the volume of n-dimensional unit
ball {x ∈ Rn : ‖x‖2 ≤ 1}, and not the volume of n-dimensional unit box.
• Let us call the quantity ρ(G) = [Vol(G)]1/n the radius of G. ρ(G) is the radius of
n-dimensional ball with the same volume as G, and this quantity can be thought of as
the average linear size of G.
Theorem. Let convex problem (P) satisfying our standing assumptions be solved by
Generic Cutting Plane Algorithm generating localizers G1, G2,... and ensuring that
ρ(Gt) → 0 as t → ∞. Let t̄ be the first step where ρ(Gt+1) < ρ(X). Starting with this
step, approximate solution xt is well defined and obeys the “error bound”

f(xt)−Opt(P) ≤ min
τ≤t

[
ρ(Gτ+1)
ρ(X)

] [
max
X

f −min
X

f
]

4.30

Opt(P) = minx∈X⊂Rn f(x) (P)

Explanation: Since intX 6= ∅, ρ(X) is positive, and since X is closed and bounded, (P)
is solvable. Let x∗ be an optimal solution to (P).
• Let us fix ε ∈ (0,1) and set Xε = x∗ + ε(X − x∗).
Xε is obtained X by similarity transformation which keeps x∗ intact and “shrinks” X
towards x∗ by factor ε. This transformation multiplies volumes by εn ⇒ ρ(Xε) = ερ(X).
• Let t be such that ρ(Gt+1) < ερ(X) = ρ(Xε). Then Vol(Gt+1) < Vol(Xε) ⇒ the set
Xε\Gt+1 is nonempty ⇒ for some z ∈ X, the point

y = x∗ + ε(z − x∗) = (1− ε)x∗ + εz
does not belong to Gt+1.

↙X

↙Xε

G
↗

t+1

x∗

y

z

4.31

↙X

↙Xε

G
↗

t+1

x∗

y

z

• G1 contains X and thus y, and Gt+1 does not contain y, implying that for some τ ≤ t,
it holds

eTτ y > eTτ cτ (!)

• We definitely have cτ ∈ X – otherwise eτ separates cτ and X 3 y, and (!) witnesses
otherwise.
⇒ cτ ∈ X ⇒ eτ = f ′(cτ) ⇒ f(cτ) + eTτ (y − cτ) ≤ f(y)
⇒ [by (!)]
f(cτ) ≤ f(y) = f((1− ε)x∗ + εz) ≤ (1− ε)f(x∗) + εf(z)

⇒ f(cτ)− f(x∗) ≤ε[f(z)− f(x∗)] ≤ ε
[
max
X

f −min
X

f
]
.

Bottom line: If 0 < ε < 1 and ρ(Gt+1) < ερ(X), then xt is well defined (since τ ≤ t and

cτ is feasible) and f(xt)−Opt(P) ≤ ε
[
max
X

f −min
X

f
]
.

4.32

Opt(P) = minx∈X⊂Rn f(x) (P)

“Starting with the first step t̄ where ρ(Gt+1) < ρ(X), xt is well defined, and

f(xt)−Opt ≤ min
τ≤t

[
ρ(Gτ+1)

ρ(X)

]
︸ ︷︷ ︸

εt

[
max
X

f −min
X

f
]

︸ ︷︷ ︸
V

”

♣ We are done. Let t ≥ t̄, so that εt < 1, and let ε ∈ (εt,1). Then for some t′ ≤ t we
have

ρ(Gt′+1) < ερ(X)
⇒ [by bottom line] xt

′
is well defined and

f(xt
′
)−Opt(P) ≤ εV

⇒ [since f(xt) ≤ f(xt
′
) due to t ≥ t′] xt is well defined and f(xt)−Opt(P) ≤ εV

⇒ [passing to limit as ε→ εt + 0] xt is well defined and f(xt)−Opt(P) ≤ εtV �

4.33

Opt(P) = minx∈X⊂Rn f(x) (P)

♠ Corollary: Let (P) be solved by cutting Plane Algorithm which ensures, for some
ϑ ∈ (0,1), that ρ(Gt+1) ≤ ϑρ(Gt). Then, for every desired accuracy ε > 0, finding feasible
ε-optimal solution xε to (P) (i.e., a feasible solution xε satisfying f(xε)−Opt ≤ ε) takes
at most

N =
1

ln(1/ϑ)
ln

(
R
[
1 +

V

ε

])
+ 1

steps of the algorithm. Here

R =
ρ(G1)

ρ(X)

says how well, in terms of volume, the initial localizer G1 approximates X, and
V = max

X
f −min

X
f

is the variation of f on X.
Note: R and V/ε are under log, implying that high accuracy and poor approximation of
X by G1 cost “nearly nothing.”
What matters, is the factor at the log which is the larger the closer ϑ < 1 is to 1.

4.34

“Academic” Implementation: Centers of Gravity

♠ In high dimensions, to ensure progress in volumes of subsequent localizers in a Cutting
Plane algorithm is not an easy task: we do not know how the cut through ct will pass,
and thus should select ct in Gt in such a way that whatever be the cut, it cuts off the
current localizer Gt a “meaningful” part of its volume.
♠ The most natural choice of ct in Gt is the center of gravity:

ct =

[∫
Gt

xdx

]
/

[∫
Gt

1dx

]
,

the expectation of the random vector uniformly distributed on Gt.
Good news: The Center of Gravity policy with Gt+1 = Ĝt results in

ϑ =
(

1−
[

n
n+1

]n)1/n
≤ [0.632...]1/n (∗)

This results in the complexity bound (# of steps needed to build ε-solution)
N = 2.2n ln

(
R
[
1 + V

ε

])
+ 1

Note: It can be proved that within absolute constant factor, like 4, this is the best
complexity bound achievable by whatever algorithm for convex minimization which can
“learn” the objective via First Order oracle only.

4.35

♣ Reason for (*): Brunn-Minkowski Symmeterization Principle:

Let Y be a convex compact set in Rn, e be a unit direction and Z be “equi-cross-
sectional” to X body symmetric w.r.t. e, so that
• Z is rotationally symmetric w.r.t. the axis e
• for every hyperplane H = {x : eTx = const}, one has

Voln−1(X ∩H) = Voln−1(Z ∩H)

Then Z is a convex compact set.

Equivalently: Let U, V be convex compact nonempty sets in Rn. Then

Vol1/n(U + V) ≥ Vol1/n(U) + Vol1/n(V).

In fact, convexity of U , V is redundant!

4.36

Disastrously bad news: Centers of Gravity are not implementable, unless the dimen-
sion n of the problem is like 2 or 3.
Reason: We have no control on the shape of localizers. When started with a polytope
G1 given by M linear inequalities (e.g., a box), Gt for t � n can be a more or less
arbitrary polytope given by M + t − 1 linear inequalities. Computing center of gravity
of a general-type high-dimensional polytope is a computationally intractable task – it
requires astronomically many computations already in the dimensions like 5 – 10.
Remedy: Maintain the shape of Gt simple and convenient for computing centers of
gravity, sacrificing, if necessary, the value of ϑ.
The most natural implementation of this remedy is enforcing Gt to be ellipsoids. As a
result,
• ct becomes computable in O(n2) operations (nice!)
• ϑ = [0.632...]1/n ≈ exp{−0.367/n} increases to ϑ ≈ exp{−0.5/n2}, spoiling the com-
plexity bound

N = 2.2n ln
(
R
[
1 + V

ε

])
+ 1

to
N = 4n2 ln

(
R
[
1 + V

ε

])
+ 1

(unpleasant, but survivable...)

4.37

Practical Implementation - Ellipsoid Method

♠ Ellipsoid in Rn is the image of the unit n-dimensional ball under one-to-one affine
mapping:

E = E(B, c) = {x = Bu+ c : uTu ≤ 1}
where B is n× n nonsingular matrix, and c ∈ Rn.
• c is the center of ellipsoid E = E(B, c): when c+ h ∈ E, c− h ∈ E as well
• When multiplying by n×n matrix B, n-dimensional volumes are multiplied by |Det(B)|
⇒Vol(E(B, c)) = |Det(B)|, ρ(E(B, c)) = |Det(B)|1/n.

4.38

E = E(B, c) = {x = Bu+ c : uTu ≤ 1}

Simple fact: Let E(B, c) be ellipsoid in Rn and e ∈ Rn be a nonzero vector. The
“half-ellipsoid”

Ê = {x ∈ E(B, c) : eTx ≤ eTc}
is covered by the ellipsoid E+ = E(B+, c+) given by

c+ = c− 1
n+1

Bp, p = BTe/
√
eTBBTe

B+ = n√
n2−1

B +
(

n
n+1
− n√

n2−1

)
(Bp)pT ,

• E(B+, c+) is the ellipsoid of the smallest volume containing the half-ellipsoid Ê, and
the volume of E(B+, c+) is strictly smaller than the one of E(B, c):

ϑ := ρ(E(B+,c+))
ρ(E(B,c))

≤ exp{− 1
2n2}.

• Given B, c, e, computing B+, c+ costs O(n2) arithmetic operations.

4.39

Opt(P) = minx∈X⊂Rn f(x) (P)

♣ Ellipsoid method is the Cutting Plane Algorithm where
• all localizers Gt are ellipsoids:

Gt = E(Bt, ct),
• the search point at step t is ct, and
• Gt+1 is the smallest volume ellipsoid containing the half-ellipsoid

Ĝt = {x ∈ Gt : eTt x ≤ eTt ct}
Computationally, at every step of the algorithm we once call the Separation oracle
SepX, (at most) once call the First Order oracle Of and spend O(n2) operations to
update (Bt, ct) into (Bt+1, ct+1) by explicit formulas.
♠ Complexity bound of the Ellipsoid algorithm is

N = 4n2 ln
(
R
[
1 + V

ε

])
+ 1

R = ρ(G1)
ρ(X)

≤ R
r
, V = max

x∈X
f(x)−min

x∈X
f(x)

Pay attention:
• R, V, ε are under log ⇒ large magnitudes in data entries and high accuracy are not
issues
• the factor at the log depends only on the structural parameter of the problem (its
design dimension n) and is independent of the remaining data.

4.40

What is Inside Simple Fact

♠ Messy formulas describing the updating
(Bt, ct)→ (Bt+1, ct+1)

in fact are easy to get.
• Ellipsoid E is the image of the unit ball U under affine transformation. Affine trans-
formation preserves ratio of volumes
⇒Finding the smallest volume ellipsoid containing a given half-ellipsoid Ê reduces to
finding the smallest volume ellipsoid U+ containing half-ball Û :

⇔
x=c+Bu

E, Ê and E+ U , Û and U+

• The “ball” problem is highly symmetric, and solving it reduces to a simple exercise in
elementary Calculus.

4.41

Why Ellipsoids?

(?) When enforcing the localizers to be of “simple and stable” shape, why we make
them ellipsoids (i.e., affine images of the unit Euclidean ball), and not something else,
say parallelotopes (affine images of the unit box)?
Answer: In a “simple stable shape” version of Cutting Plane Scheme all localizers are
affine images of some fixed n-dimensional solid C (closed and bounded convex set in Rn

with a nonempty interior). To allow for reducing step by step volumes of localizers, C
cannot be arbitrary. What we need is the following property of C:
One can fix a point c in C in such a way that whatever be a cut

Ĉ = {x ∈ C : eTx ≤ eTc} [e 6= 0]
this cut can be covered by the affine image of C with the volume less than the one of
C:

∃B, b : Ĉ ⊂ BC + b & |Det(B)| < 1 (!)
Note: The Ellipsoid method corresponds to unit Euclidean ball in the role of C
and to c = 0, which allows to satisfy (!) with |Det(B)| ≤ exp{− 1

2n
}, finally yielding

ϑ ≤ exp{− 1
2n2}.

4.42

• Solids C with the above property are “rare commodity.” For example, n-dimensional
box does not possess it.
• Another “good” solid is n-dimensional simplex (this is not that easy to see!). Here
(!) can be satisfied with |Det(B)| ≤ exp{−O(1/n2)}, finally yielding ϑ = (1−O(1/n3)).
⇒From the complexity viewpoint, “simplex” Cutting Plane algorithm is worse than the
Ellipsoid method.
The same is true for handful of other known so far (and quite exotic) ”good solids.”

4.43

Ellipsoid Method: pro’s & con’s

♣ Academically speaking, Ellipsoid method is an indispensable tool underlying basically
all results on efficient solvability of generic convex problems, most notably, the famous
theorem of L. Khachiyan (1978) on polynomial time solvability of Linear Programming
with rational data in Rational Arithmetic Complexity model.
♠ What matters from theoretical perspective, is “universality” of the algorithm (nearly
no assumptions on the problem except for convexity) and complexity bound of the form
“structural parameter outside of log, all else, including required accuracy, under the
log.”
♠ Another theoretical (and to some extent, also practical) advantage of the Ellipsoid
algorithm is that as far as the representation of the feasible set X is concerned, all we
need is a Separation oracle, and not the list of constraints describing X. The number
of these constraints can be astronomically large, making impossible to check feasibility
by looking at the constraints one by one; however, in many important situations the
constraints are “well organized,” allowing to implement Separation oracle efficiently.

4.44

♠ Theoretically, the only (and minor!) drawbacks of the algorithm is the necessity for
the feasible set X to be bounded, with known “upper bound,” and to possess nonempty
interior.
As of now, there is not way to cure the first drawback without sacrificing universality.
The second “drawback” is artifact: given nonempty set

X = {x : gi(x) ≤ 0,1 ≤ i ≤ m},
we can extend it to

Xε = {x : gi(x) ≤ ε,1 ≤ i ≤ m},
thus making the interior nonempty, and minimize the objective within accuracy ε on
this larger set, seeking for ε-optimal ε-feasible solution instead of ε-optimal and exactly
feasible one.
This is quite natural: to find a feasible solution is, in general, not easier than to find an
optimal one. Thus, either ask for exactly feasible and exactly optimal solution (which be-
yond LO is unrealistic), or allow for controlled violation in both feasibility and optimality!

4.45

♠ From practical perspective, theoretical drawbacks of the Ellipsoid method become
irrelevant: for all practical purposes, bounds on the magnitude of variables like 10100 are
the same as no bounds at all, and infeasibility like 10−10 is the same as feasibility. And
since the bounds on the variables and the infeasibility are under log in the complexity
estimate, 10100 and 10−10 are not a disaster.
♠ Practical limitations (rather severe!) of Ellipsoid algorithm stem from method’s
sensitivity to problem’s design dimension n. Theoretically, with ε, V,R fixed, the number
of steps grows with n as n2, and the effort per step is at least O(n2) a.o.
⇒Theoretically, computational effort grows with n at least as O(n4),
⇒n like 1000 and more is beyond the “practical grasp” of the algorithm.
Note: Nearly all modern applications of Convex Optimization deal with n in the range
of tens and hundreds of thousands!

4.46

♠ By itself, growth of theoretical complexity with n as n4 is not a big deal: for Simplex
method, this growth is exponential rather than polynomial, and nobody dies – in reality,
Simplex does not work according to its disastrous theoretical complexity bound.
Ellipsoid algorithm, unfortunately, works more or less according to its complexity bound.
⇒Practical scope of Ellipsoid algorithm is restricted to convex problems with few tens
of variables.
However: Low-dimensional convex problems from time to time do arise in applications.
More importantly, these problems arise “on a permanent basis” as auxiliary problems
within some modern algorithms aimed at solving extremely large-scale convex problems.
⇒The scope of practical applications of Ellipsoid algorithm is nonempty, and within
this scope, the algorithm, due to its ability to produce high-accuracy solutions (and
surprising stability to rounding errors) can be considered as the method of choice.

4.47

How It Works
Opt = min

x
f(x), X = {x ∈ Rn : aTi x− bi ≤ 0, 1 ≤ i ≤ m}

♠ Real-life problem with n = 10 variables and m = 81,963,927 “well-organized” linear
constraints:

CPU, sec t f(xt) f(xt)−Opt≤ ρ(Gt)/ρ(G1)
0.01 1 0.000000 6.7e4 1.0e0
0.53 63 0.000000 6.7e3 4.2e-1
0.60 176 0.000000 6.7e2 8.9e-2
0.61 280 0.000000 6.6e1 1.5e-2
0.63 436 0.000000 6.6e0 2.5e-3
1.17 895 -1.615642 6.3e-1 4.2e-5
1.45 1250 -1.983631 6.1e-2 4.7e-6
1.68 1628 -2.020759 5.9e-3 4.5e-7
1.88 1992 -2.024579 5.9e-4 4.5e-8
2.08 2364 -2.024957 5.9e-5 4.5e-9
2.42 2755 -2.024996 5.7e-6 4.1e-10
2.66 3033 -2.024999 9.4e-7 7.6e-11

4.48

♠ Similar problem with n = 30 variables and
m = 1,462,753,730 “well-organized” linear constraints:

CPU, sec t f(xt) f(xt)−Opt≤ ρ(Gt)/ρ(G1)
0.02 1 0.000000 5.9e5 1.0e0
1.56 649 0.000000 5.9e4 5.0e-1
1.95 2258 0.000000 5.9e3 8.1e-2
2.23 4130 0.000000 5.9e2 8.5e-3
5.28 7080 -19.044887 5.9e1 8.6e-4

10.13 10100 -46.339639 5.7e0 1.1e-4
15.42 13308 -49.683777 5.6e-1 1.1e-5
19.65 16627 -50.034527 5.5e-2 1.0e-6
25.12 19817 -50.071008 5.4e-3 1.1e-7
31.03 23040 -50.074601 5.4e-4 1.1e-8
37.84 26434 -50.074959 5.4e-5 1.0e-9
45.61 29447 -50.074996 5.3e-6 1.2e-10
52.35 31983 -50.074999 1.0e-6 2.0e-11

4.49

From Ellipsoid Method
to Polynomial Solvability of Convex Programming

♣ Consider a generic Convex Programming problem P which is polynomially computable,
of polynomial growth and with polynomially bounded feasible sets.
In order to solve an instance

min
x∈X(p)

p0(x) (p)

within accuracy ε, we act as follows:
• We rewrite (p) as

min
x∈X

p0(x), X = {x : ‖x‖2 ≤ R, InfeasP(x, p) ≤ ε} (∗)

where R is the a priori bound on the size of X(p) given by assumption on polynomial
boundedness of feasible sets. Note that X(p) ⊂ X;
• The polynomial computability assumption allows to equip (∗) with First Order and
Separation oracles
• Assuming (p) feasible, polynomial growth assumption allows to bound from above
VarR(p0) and to bound from below the radius r > 0 of a ball contained in the feasible
set of (∗)
♣ We now are in a position to solve (∗) by the Ellipsoid method. The complexity bound
for the method combines with the bounds on the effort to mimic the First Order and
the Separation oracles to yield a polynomial-time bound on the complexity of finding
ε-solution to (p).

4.50

Complexity bounds for LP, CQP, SDP

♣ The theorem on polynomial time solvability of Convex Programming is “constructive”
– we can explicitly point out the underlying polynomial time solution algorithm (e.g.,
the Ellipsoid method). However, from the practical viewpoint this is a kind of “existence
theorem” – the resulting complexity bounds, although polynomial, are “too large” for
practical large-scale computations.
The intrinsic drawback of the Ellipsoid method (and all other “universal” polynomial
time methods in Convex Programming) is that the method utilizes just the convex
structure of instances and is unable to facilitate our a priori knowledge of the particular
analytic structure of these instances.
• In late 80’s, a new family of polynomial time methods for “well-structured” generic
convex programs was found – the Interior Point methods which indeed are able to
facilitate our knowledge of the analytic structure of instances.
• LP, CQP and SDP are especially well-suited for processing by the IP methods, and
these methods yield the best known so far theoretical complexity bounds for the indicated
generic problems.

4.51

♣ As far as practical computations are concerned and high-accuracy solutions are sought,
the IP methods
• in the case of Linear Programming, are competitive (to say the least) with the Simplex
method
• in the case of Conic Quadratic and Semidefinite Programming, are the best known
so far numerical techniques.

4.52

V. INTERIOR POINT ALGORITHMS FOR

LP/CQP/SDP

Preliminaries: The Newton method and the Interior Penalty Scheme

♠ The classical Newton method for unconstrained minimization of a smooth convex
function f : Rn → R∪{+∞} with an open domain is the linearization scheme for solving
the Fermat equation

∇f(x) = 0. (∗)
Given current iterate xt, we linearize (∗) at xt:

∇f(x) ≈ ∇f(xt) +∇2f(xt)(x− xt);

the next iterate is the solution to the linearized Fermat equation:
∇f(xt) +∇2f(xt)(x− xt) = 0

⇒ xt+1 = xt − [∇2f(xt)]−1∇f(xt) (Nwt)

• Assuming that x∗ is a nondegenerate minimum of f :
∇f(x∗) = 0, ∇2f(x∗) � 0,

the Newton method converges to x∗ quadratically, provided that it is started close enough
to x∗:

∃(r > 0, C <∞) : ‖xt − x∗‖2 ≤ r ⇒ ‖xt+1 − x∗‖2 ≤ C‖xt − x∗‖2
2 ≤

1
2
‖xt − x∗‖2.

• In order to ensure global convergence of the method, one incorporates linesearch, thus
coming to the damped Newton scheme

xt+1 = xt − γt[∇2f(xt)]−1∇f(xt).

5.1

♠ A Convex Programming program

min
x

{
cTx : x ∈ X ⊂ Rn

}
(C)

with closed and bounded feasible domain X (intX 6= ∅) can be represented as a “limiting
case” of convex unconstrained problems.
Indeed, introducing an interior penalty F (·) : intX → R such that
• F is smooth and ∇2F (x) � 0 for x ∈ intX,
• F (xi)→∞ along every sequence {xi ∈ intX} converging to a point x ∈ ∂X,
one can approximate (C) by a “penalized” problem

min
x

{
ft(x) ≡ cTx+

1

t
F (x)

}
(Ct).

• For every t > 0, ft is a smooth convex function with the domain intX, and ft attains
its minimum on the domain at a unique point x∗(t);
• As t→∞, the path x∗(t) converges to the solution set of (C).
• In order to solve (C), one can trace the path x∗(t), iterating the updating

(a) ti 7→ ti+1 > ti
(b) xi 7→ xi+1“close enough” to x∗(ti+1)

Usually, (b) is obtained by minimizing fti+1(·) with the (damped) Newton method started
at xi.

5.2

min
x

{
cTx : x ∈ X

}
; F : intX → R

⇓
ft(x) = cTx+ 1

t
F (x) x∗(t) = argmin

x
ft(x)

⇓
(a) ti 7→ ti+1 > ti (b) xi 7→ xi+1 − γi[∇2fti+1(xi)]−1∇fti+1(xi)

• blue polygon: X • magenta: {u : cTu = min
X

cTx}
• red dots and crosses: path x∗(t) and “targets” x∗(ti) • black points: iterates xi

5.3

♠ Traditional theory of Newton method predicted slowing the process down as penalty
t grows—by this theory, the larger t, the more difficult is to minimize ft by the Newton
method.
However: In 1985-94, it was discovered that
• With an appropriate choice of the interior penalty F , there is no slowing down, and
Interior Penalty Scheme admits a polynomial time implementation;
• LP, CQP and SDP are especially well-suited for the resulting IP (Interior Point)
methods.

5.4

IP methods for LP–CQP–SDP: building blocks

♣ We are interested in a generic conic problem

min
x

{
cTx : Ax−B ∈ K

}
(CP)

where K is a canonical cone – a direct product of several Semidefinite and Lorentz
cones:

K = Sk1

+ × ...× Skp+ × Lkp+1 × ...× Lkm ⊂ E = Sk1 × ...× Skp ×Rkp+1 × ...×Rkm. (Cone)

♠ We equip the Semidefinite and the Lorentz cones with canonical barriers:
• The canonical barrier for Sk+ is

Sk(X) = − ln Det(X) : intSk+ → R;

the parameter of this barrier is θ(Sk) = k.

5.5

K = Sk1

+ × ...× Skp+ × Lkp+1 × ...× Lkm ⊂ E = Sk1 × ...× Skp ×Rkp+1 × ..×Rkm

Sk(X) = − ln Det(X) : intSk+ → R, θ(Sk) = k

• The canonical barrier for Lk is

Lk(x) = − ln(x2
k − x2

1 − ...− x2
k−1) = − ln(xTJkx),

Jk =

 −1
.. .

−1
1

;

the parameter of this barrier is θ(Lk) = 2.
• The canonical barrier K for K is the direct sum of the canonical barriers of the factors:

K(X) = Sk1
(X1) + ...+ Skp(Xp) + Lkp+1

(Xp+1) + ...+ Lkm(Xm),

Xi ∈
{

intSki+, i ≤ p
intLki, p < i ≤ m

;

the parameter of this barrier is the sum of parameters of the components:

θ(K) = θ(Sk1
) + ...+ θ(Skp) + θ(Lkp+1

) + ...+ θ(Lkm) =
p∑

i=1
ki + 2(m− p).

5.6

K = Sk1

+ × ...× S
kp
+ × Lkp+1 × ...× Lkm ⊂ E = Sk1 × ...× Skp ×Rkp+1 × ..×Rkm

K(X) = −
p∑

i=1

ln Det(Xi)−
m∑

i=p+1

ln(XT
i JiXi), Jk =

 −1
.. .

−1
1

 ;

θ(K) =
p∑

i=1

ki + 2(m− p).

Elementary properties of canonical barriers:
• [barrier property] K(·) is C∞ strongly convex function: ∇2K(·) � 0 on intK, and

Xi ∈ intK, lim
i→∞

Xi = X ∈ ∂K⇒ K(Xi)→∞, i→∞;

• [logarithmic homogeneity]

X ∈ intK, t > 0⇒ K(tX) = K(X)− θ(K) ln t
⇒ ∇K(tX) = t−1∇K(X); 〈∇K(X), X〉E = −θ(K)

• [self-duality] The mapping X 7→ −∇K(X) is a one-to-one mapping of intK onto intK,
and this mapping is self-inverse:

X ∈ intK, S = −∇K(X)⇔ S ∈ intK, X = −∇K(S).

5.7

Central Path

♠ Consider a primal-dual pair of conic problems associated with a canonical cone K:

min
x

{
cTx : Ax−B ∈ K

}
(CP)

max
S
{〈B,S〉E : A∗S = c, S ∈ K} (CD)

[
A∗ : 〈X,Ax〉E ≡ xTA∗X

]
⇔

min
X
{〈C,X〉E : X ∈ (L −B) ∩K} (P)

max
S

{
〈B,S〉E : S ∈ (L⊥ + C) ∩K

}
(D)

[L = ImA, C : A∗C = c]

Note: We assume from now on that KerA = {0}, implying that reformulation
[(CP),(CD)] 7→ [(P),(D)] is possible: the required C does exist.

♣ In the sequel, we assume that problems (P), (D) are strictly feasible: the primal
feasible plane L −B and the dual feasible plane L⊥ + C intersect the interior of K.

5.8

min
x

{
cTx : Ax−B ∈ K

}
(CP)

max
S
{〈B,S〉E : A∗S = c, S ∈ K} (CD)

[
A∗ : 〈X,Ax〉E ≡ xTA∗X

]
⇔

min
X
{〈C,X〉E : X ∈ (L −B) ∩K} (P)

max
S

{
〈B,S〉E : S ∈ (L⊥ + C) ∩K

}
(D)

[L = ImA, C : A∗C = c]

• The canonical barrier of K induces the barrier F (x) = K(Ax−B) for the feasible set
of (CP), and thus defines the path

x∗(t) = argmin
x

[
cTx+ 1

t
F (x)

]
which turns out to be well-defined for all t > 0.
• The image X∗(t) = Ax∗(t)−B of the path x∗(t) is the path of minimizers of 〈C,X〉+
1
t
K(X) over strictly primal feasible X’s and is fully characterized by the following two

properties:

♦ X∗(t) is strictly primal feasible
♥ −t−1∇K(X∗(t)) is strictly dual feasible

5.9

x∗(t) = argmin
x

[
cTx+ 1

t
F (x)

]
⇒ X∗(t) = Ax∗(t)−B

Claim: X∗(t) is fully characterized by the following two properties:
♦ X∗(t) is strictly primal feasible
♥ −t−1∇K(X∗(t)) is strictly dual feasible

Indeed, X∗(t) is the minimizer of the function 〈C,X〉E + t−1K(X) over the set of strictly
feasible solutions to (P)

⇒C + t−1∇K(X∗(t)) ∈ L⊥ ⇔ [−t−1∇K(X∗(t))] ∈ L⊥ + C;
besides this, −t−1∇K(X∗(t)) ∈ intK.

5.10

min
X
{〈C,X〉E : X ∈ (L −B) ∩K} (P) max

S

{
〈B,S〉E : S ∈ (L⊥ + C) ∩K

}
(D)

⇒ Primal central path X∗(t):
{

(a) X∗(t) is strictly primal feasible
(b) −t−1∇K(X∗(t)) is strictly dual feasible

• Due to primal-dual symmetry, the dual problem (D) defines the dual central path
S∗(t) comprised of minimizers of −〈B,S〉E + 1

t
K(S) over strictly dual feasible S’s and

fully characterized by the following two properties:

(c) S∗(t) is strictly dual feasible
(d) −t−1∇K(S∗(t)) is strictly primal feasible

♣ The paths are closely related:

X∗(t) = −t−1∇K(S∗(t)); S∗(t) = −t−1∇K(X∗(t)).

Indeed, setting S = −t−1∇K(X∗(t)), we see that S is strictly dual feasible by (b), while

−t−1∇K(S) = −t−1∇K(−t−1∇K(X∗(t))) = −∇K(−∇K(X∗(t))) [by logarithmic homogeneity of K]
= X∗(t) [since the mapping X 7→ −∇K(X) is self-inverse]

i.e., −t−1∇K(S) is strictly primal feasible. Thus, S satisfies (c), (d), whence

S := −t−1∇K(X∗(t)) = S∗(t).

5.11

min
x

{
cTx : Ax−B ∈ K

}
(CP) max

S
{〈B,S〉E : A∗S = c, S ∈ K} (CD)

⇒ min
X
{〈C,X〉E : X ∈ (L −B) ∩K} (P) max

S

{
〈B,S〉E : S ∈ (L⊥ + C) ∩K

}
(D)

⇒ Primal-Dual Central Path (X∗(t), S∗(t)):

{
X∗(t) is strictly primal feasible
S∗(t) is strictly dual feasible
X∗(t) = −t−1∇K(S∗(t))⇔ S∗(t) = −t−1∇K(X∗(t)).

♣ The Duality Gap on the primal-dual central path equals to θ(K)
t

. Thus, X∗(t) is
θ(K)
t

-primal optimal, and S∗(t) is θ(K)
t

-dual optimal:

DualityGap(X∗(t), S∗(t)) ≡ [〈C,X∗(t)〉E −Opt(P)] + [Opt(D)− 〈B,S∗(t)〉E]
= 〈S∗(t), X∗(t)〉E = t−1〈−∇K(X∗(t)), X∗(t)〉E
= t−1θ(K).

♠ Consequently, our “ideal goal” could be to move along the primal-dual central path,
thus staying strictly primal-dual feasible and approaching the primal and the dual optimal
sets.
However: We do not know how to stay on a ”curved” path, although can move close
to the path.

5.12

In a neighbourhood of the central path

min
X
{〈C,X〉E : X ∈ (L −B) ∩K} (P) max

S

{
〈B,S〉E : S ∈ (L⊥ + C) ∩K

}
(D)

⇒ Primal-Dual Central Path (X∗(t), S∗(t)):

{
X∗(t) is strictly primal feasible
S∗(t) is strictly dual feasible
X∗(t) = −t−1∇K(S∗(t))⇔ S∗(t) = −t−1∇K(X∗(t)).

♠ Given a triple (t,X, S), where t > 0, X is strictly primal feasible, and S is strictly dual
feasible, a good for our purposes measure of closeness of (X,S) to (X∗(t), S∗(t)) turns
out to be

dist(t,X, S) =
√
〈
[
∇2K(X)

]−1
[tS +∇K(X)], tS +∇K(X)〉E

=
√
〈
[
∇2K(S)

]−1
[tX +∇K(S)], tX +∇K(S)〉E.

• Let Nr be “r-neighbourhood” of the primal-dual central path comprised of triples
(t,X, S) with t > 0 and primal-dual strictly feasible X, S satisfying dist(t,X, S) ≤ r. The
duality gap in N1 is nearly the same as on the central path:

(t,X, S) ∈ N1 ⇒ DualityGap(X,S) ≤
2θ(K)

t
.

♠ Consequently, our “realistic goal” could be to trace the primal-dual central path as
t → ∞, staying in (or periodically entering) the neighbourhood N1 of the primal-dual
central path.

5.13

How to trace the central path?

♠ The central path is given by

Strict primal feasibility: Strict dual feasibility:
(a) X ∈ L −B [L = ImA] (c) S ∈ L⊥ + C
(b) X ∈ intK (d) S ∈ intK
Augmented complementary slackness:

(e) S + t−1∇K(X) = 0︸ ︷︷ ︸
Gt(X,S)=0

♠ The most natural way to trace the path is as follows:
Given a current triple ti, Xi, Si with strictly primal-dual feasible Xi, Si, we
• increase the penalty parameter t: ti 7→ ti+1 > ti;
• linearize at ti+1, Xi, Si the system of nonlinear equations (e), thus coming to the
system of linear equations for the (approximate) “corrections” ∆X ≈ X∗(ti+1) − Xi,
∆S ≈ S∗(ti+1)− Si :

∆X ∈ L,∆S ∈ L⊥, Gti+1(Xi, Si) +
∂Gti+1

(Xi,Si)

∂X
∆X +

∂Gti+1
(Xi,Si)

∂S
∆S = 0 (N)

• solve (N), thus getting the corrections (“search directions”) ∆Xi, ∆Si, and update
Xi, Si according to

Xi+1 = Xi + αi∆Xi, Si+1 = Si + βi∆Si.

5.14

♠ Note: The Augmented Complementary Slackness (ACS) equation can be written in
many equivalent forms:

S + t−1∇K(X) = 0, X + t−1∇K(S) = 0, ...
Different equivalent formulations of ACS equation result in different linearizations and
thus in different path-following schemes.

5.15

minx
{
cTx : Ax−B ∈ K

}
(CP)

⇔ minX {〈C,X〉E : X ∈ [L −B] ∩K} (P)
[A∗C = c,L = ImA]

Example: Primal path-following method. Let us use the ACS equation “as it is”:
S + t−1∇K(X) = 0.

Then the system for corrections becomes

∆X = A∆x [⇔∆X ∈ L = ImA]
A∗∆S = 0 [⇔∆S ∈ L⊥]
∆S + t−1

i+1[∇2K(Xi)]∆X = −Si − t−1
i+1∇K(Xi),

which, multiplying both sides of the cyan equation by A∗, is equivalent to

∆X = A∆x
∆S = −t−1

i+1[∇2K(Xi)]∆X − Si − t−1
i+1∇K(Xi),

t−1
i+1A∗[∇2K(Xi)]A∆x = −A∗Si︸ ︷︷ ︸

c

−t−1
i+1A∗∇K(Xi).

5.16

minx
{
cTx : Ax−B ∈ K

}
(CP)

⇔ minX {〈C,X〉E : X ∈ [L −B] ∩K} (P)
[A∗C = c,L = ImA]

∆X = A∆x
∆S = −t−1

i+1[∇2K(Xi)]∆X − Si − t−1
i+1∇K(Xi),

t−1
i+1A∗[∇2K(Xi)]A∆x = −A∗Si︸ ︷︷ ︸

c

−t−1
i+1A∗∇K(Xi).

Setting

F (x) = K(Ax−B),

the method becomes

ti 7→ ti+1 > ti,
xi+1 = xi − [∇2F (xi)]−1[ti+1c+∇F (xi)],
Xi+1 = Axi+1 −B,
Si+1 = ...

which is exactly the classical Interior Penalty Scheme for tracing the path
x∗(t) = argminx

[
cTx+ t−1F (x)

]
= argminx

[
tcTx+ F (x)

]
.

5.17

minx
{
cTx : Ax−B ∈ K

}
(CP)

⇒

ti 7→ ti+1 > ti,
xi+1 = xi − [∇2F (xi)]−1[ti+1c+∇F (xi)],

F (x) = K(Ax−B);
Xi+1 = Axi+1 −B,
Si+1 = ...

(PF)

Theorem. Let the starting point (t0, X0, S0) in the Primal Path-Following method
belong to the neighbourhood N0.1 of the central path, i.e.,
• t0 > 0, X0 is strictly primal feasible, S0 is strictly dual feasible;

•
√
〈
[
∇2K(X0)

]−1
[t0S0 +∇K(X0)], t0S0 +∇K(X0)〉E ≤ 0.1.

With the penalty updating rule

ti+1 =

(
1 +

0.1√
θ(K)

)
ti,

the Primal Path-Following method is well-defined and keeps all iterates in N0.1. In
particular, it takes no more than

O(1)
√
θ(K) ln

(
2 +

θ(K)

t0ε

)
steps of (PF) to get a feasible ε-solution of (CP).

5.18

♠ Theorem implies the best known so far polynomial time complexity bounds for LP,
CQP and SDP.
♠Writing the Augmented Complementarity Slackness equation in the “symmetric” form

X + t−1∇K(S) = 0,

one arrives at the Dual Path-Following method with exactly the same theoretical prop-
erties as the Primal method.

5.19

2D feasible set of a toy SDP (K = S3
+).

“Continuous curve” is the primal central path
Dots are iterates xi of the Primal Path-Following method.

Itr# Objective DualityGap Itr# Objective DualityGap
1 -0.100000 2.96 7 -1.359870 8.4e-4
2 -0.906963 0.51 8 -1.360259 2.1e-4
3 -1.212689 0.19 9 -1.360374 5.3e-5
4 -1.301082 6.9e-2 10 -1.360397 1.4e-5
5 -1.349584 2.1e-2 11 -1.360404 3.8e-6
6 -1.356463 4.7e-3 12 -1.360406 9.5e-7

5.20

Semidefinite Case

♠ In spite of being “theoretically perfect”, Primal and Dual Path-Following methods
in practice are inferior as compared with the methods based on “less straightforward”
forms of the ACS equation. Let us look at these “more advanced” methods in the
SDP case where K is the produc of semidefinite cones, or, which is the same, is the
positive semidefinite cone in the space Sν of block-diagonal symmetric matrices of given
block-diagonal structure ν:

K = Sν+ ⊂ E = Sν, K(X) = − ln Det(X).

In this case,
• ∇K(X) = −X−1, [∇2K(X)]H = X−1HX−1:

d

dt

∣∣
t=0

K(X + tH) = Tr(−X−1H),
d2

dt2

∣∣
t=0

K(X + tH) = Tr(HX−1HX−1).

• The ACS equation reads

S = t−1X−1 ⇔ SX = t−1I. (∗)
♠ An important class of equivalent representations of (∗) is as follows: given a “scaling
matrix” Q � 0, one can rewrite (∗) in two equivalent forms:

Q−1SXQ = t−1I, QXSQ−1 = t−1I,

whence also

QXSQ−1 +Q−1SXQ = 2t−1I; (∗∗)
in fact, (∗) and (∗∗) regarded as nonlinear equations with positive definite unknowns
X,S are equivalent to each other.

5.21

QXSQ−1 +Q−1SXQ = 2t−1I (∗∗)
Explanation: Let Q ∈ Sν be nonsingular. The Q-scaling

X 7→ QXQ
is a one-to-one linear mapping of Sν onto itself, the inverse being the mapping

X 7→ Q−1XQ−1.
Q-scaling is a symmetry of the positive semidefinite cone Sν+ – it maps the cone onto
itself.
⇒Given a primal-dual pair of semidefinite programs

Opt(P) = min
X

{
Tr(CX) : X ∈ [L −B] ∩ Sk+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [L⊥ + C] ∩ Sk+

}
(D)

and a nonsingular matrix Q ∈ Sν, one can pass in (P) from variable X to variable
X̂ = QXQ, and in (D) from variable S to variable S̃ = Q−1SQ−1. The resulting problems
are

Opt(P) = min
X̂

{
Tr(C̃X̂) : X̂ ∈ [L̂ − B̂] ∩ Sk+

}
(P̂) Opt(D) = max

S̃

{
Tr(B̂S̃) : S̃ ∈ [L̃⊥ + C̃] ∩ Sk+

}
(D̃)[

B̂ = QBQ, L̂ = {QXQ : X ∈ L}, C̃ = Q−1CQ−1, L̃⊥ = {Q−1SQ−1 : S ∈ L⊥}
]

♠ P̂ and D̃ are dual to each other, the primal-dual central path of this pair is the image
of the primal-dual path of (P), (D) under the primal-dual Q-scaling

(X,S) 7→ (X̂ = QXQ, S̃ = Q−1SQ−1)
Q preserves closeness to the path, etc.

5.22

♠ Writing down the ACS equation as
QXSQ−1 +Q−1SXQ = 2t−1I (!)

we in fact
• pass from (P), (D) to the equivalent primal-dual pair of problems (P̂), (D̃)
• write down the ACS equation for the latter pair in the simplest primal-dual symmetric
form

X̂S̃ + S̃X̂ = 2t−1I,
• “scale back” to the original primal-dual variables X,S, thus arriving at (!).

5.23

QXSQ−1 +Q−1SXQ = 2t−1I (∗∗)

• With the ACS equation written in the form of (∗∗), one can use iteration-dependent
scaling matrices Qi. The system defining the search directions at i-th iteration becomes

∆X ∈ L, ∆S ∈ L⊥,
Qi[∆XSi +Xi∆S]Q−1

i +Q−1
i [Si∆X + ∆SXi]Qi = 2t−1

i+1I −QiXiSiQ
−1
i −Q

−1
i SiXiQi

♠ Popular choices of the scaling matrices Qi are:
• Qi = I [Alizadeh-Haeberly-Overton method]

• Qi = S
1/2
i [the XS-method]

• Qi = X
−1/2
i [the SX-method]

• Qi =
(
X
−1/2
i (X1/2

i SiX
1/2
i)−1/2X

1/2
i Si

)1/2
[Nesterov-Todd method]

5.24

Note: The XS-, the SX-, and the NT-method are based on commutative scalings,
where the matrices

X̂i = QiXiQi, S̃i = Q−1
i SiQ

−1
i

commute with each other. Specifically,
• in the XS-method, S̃ = I • in the SX-method, X̂ = I,
• in the NT-method, S̃ = X̂.

5.25

min
X

{
Tr(CX) : X ∈ (L −B) ∩ Sk+

}
(P)

max
S

{
Tr(BS) : S ∈ (L⊥ + C) ∩ Sk+

}
(D)

♣ Theorem. Let a primal-dual pair (P), (D) of strictly feasible semidefinite programs
be solved by a primal-dual path-following method based on commutative scalings, and
let the penalty updating policy in the method be

ti+1 =

(
1 +

0.1√
k

)
ti, (U)

where k is the row size of matrices from Sν.
Assume that the starting triple (t0, X0, S0) is such that
• X0 is strictly primal feasible, S0 is strictly dual feasible, t0 = k−1Tr(X0S0);
• The triple (t0, X0, S0) is close to the central path:

dist(t0, X0, S0) :=
√
〈
[
∇2K(X0)

]−1
[t0S0 +∇K(X0)], t0S0 +∇K(X0)〉E

≡
√

Tr([t0X0
1/2S0X0

1/2 − I]2)≤ 0.1.

Then the method is well-defined and keeps all iterates in N0.1. In particular, it takes no
more than

O(1)
√
k ln

(
2 +

k

t0ε

)
steps of the method to build feasible ε-solutions of (P), (D).

5.26

♠ To improve the practical performance of primal-dual path-following methods, in actual
computations
— the penalty parameter is updated in a “more aggressive,” as compared to (U), on
line adjusted fashion;
— the primal-dual methods are allowed to travel in “much wider,” as compared to N0.1,
neighbourhoods of the central path.
♠ The constructions and the complexity results we have presented are “incomplete” in
the sense that they do not take into account the necessity to come close to the central
path before starting path-tracing and do not take care of the case when the pair (P), (D)
is not strictly feasible. All these “gaps” can be easily closed via the same path-following
technique as applied to appropriate augmented versions of the original problem.

5.27

Complexity bounds for LPb

♣ A program from LPb:

(p) : min
x

{
cTx : Ax ≥ b, ‖x‖∞ ≤ R

}
[A ∈Mm,n]

can be solved within accuracy ε in

NLP = O(1)
√
m+ n ln

(
‖Data(p)‖1 + ε2

ε

)
iterations.
The computational effort per iteration is dominated by the necessity, given a positive
definite diagonal matrix ∆ and a vector r, to assemble the matrix of the system of linear
equations

[A; I;−I]T ∆ [A; I;−I]x = h

and to solve this system.
• In the case m = O(n), the overall complexity of solving (p) within accuracy ε is cubic
in n:

O(1)mn2 ln

(
‖Data(p)‖1 + ε2

ε

)

5.28

Complexity bounds for CQPb

♣ A program from CQPb:

(p) :
{
cTx : ‖Dix− di‖2 ≤ eTi x− ci, i = 1, ..., k; ‖x‖2 ≤ R

}
can be solved within accuracy ε in

NCQP = O(1)
√
k ln

(
‖Data(p)‖1 + ε2

ε

)
iterations.
The computational effort per iteration is dominated by the necessity, given vectors δi,
i = 1, ..., k and a vector r, to assemble the matrices

Hi = DT
i (I − δiδTi)Di, i = 1, ..., k

and to solve a dimx× dimx linear system

Hu = r

with positive definite matrix H “readily given” by H1, ..., Hk.

5.29

Complexity bounds for SDPb

♣ A program from SDPb:

(p) : min
x

{
cTx : A(x) =

n∑
i=1

xiAi −B � 0, ‖x‖2 ≤ R

}
can be solved within accuracy ε in

NSDP = O(1)
√
µ ln

(
‖Data(p)‖1 + ε2

ε

)
iterations, where µ is the row size of matrices A1, ..., An.
The computational effort per iteration is dominated by the necessity, given a positive
definite matrix X of the same size and block-diagonal structure as those of Ai and a
vector r
• to compute n× n symmetric matrix Ĥ with entries

Ĥij = Tr(X−1AiX
−1Aj), i, j = 1, ..., n;

• to solve n× n linear system

Hu = r

with positive definite matrix H “readily given” by Ĥ.

5.30

VI. FIRST ORDER METHODS

Simple methods for extremely large-scale problems

♣ The arithmetic complexity of a step in all known polynomial time methods for Convex
Programming grows up nonlinearly with the design dimension n of the problem – at
least as O(n2), if not as O(n3) (the only exception are extremely sparse real-world LPs
with favourable sparsity patterns).
What to do when the design dimension is of order of tens and hundreds of thousands,
and the problem is not a “very sparse LP”?
Nonlinear convex problems of huge design dimension do arise in numerous applications,
e.g., in
• SDP relaxations of large combinatorial problems,
• Structural Design (especially for 3D structures),
• Signal Processing, High-dimensional Statistics, Machine Learning
• 3D Medical imaging problems

6.1

Example of Medical Imaging problem: PET Image Reconstruction

♣ PET (Positron Emission Tomography) is a powerful, non-invasive, medical diagnostic
imaging technique for measuring the metabolic activity of cells in the human body. It
has been in clinical use since the early 1990s. PET imaging is unique in that it shows
the chemical functioning of organs and tissues, while other imaging techniques - such as
X-ray, computerized tomography (CT) and magnetic resonance imaging (MRI) - show
anatomic structures.

6.2

♣ Physics of PET. A PET scan uses radioactive tracer – a biologically active fluid
with a radio-active component capable of emitting positrons. When administered to
a patient, the tracer distributes within the body and, with properly chosen biologically
active “carrier”, concentrates in desired locations, e.g., in the areas of high metabolic
activity where cancer tumors can be expected.
• The tracer disintegrates, emitting positrons.
• A positron immediately annihilates with a near-by electron, giving rise to two photons
flying at the speed of light off the point of annihilation in nearly opposite directions.
They are registered outside the patient by cylindrical PET scanner consisting of several
rings of detectors.
• When two detectors “simultaneously” (within ∼ 10−8 sec time window) are hit by
photons, this event is registered, indicating that somewhere on the line linking the
detectors (LOR – “Line of Response”) a disintegration act took place.

6.3

• The measured data is the collection of numbers of LOR’s counted by different pairs
of detectors (“bins”), and the problem is to recover from these measurements the 3D
density of the tracer.

♣ Mathematically, the PET Image Reconstruction problem, after appropriate discretiza-
tion, becomes the problem of recovering a vector λ ≥ 0 from a noisy observation y of
the vector Pλ:

λ 7→ y = Pλ+ noise ? 7→? estimate of λ.

Specifically,
• entries of λ are indexed by voxels – small cubes into which we partition the field of
view; λj is the average density of the tracer in voxel j;
• entries of y are indexed by bins (pairs of detectors); yi is the number of LORs registered
by bin i;
• P = [pij] is a given matrix; pij is the probability for a LOR originating in voxel j to be
registered by bin i.
Statistical model of PET states that the entries yi in y are realizations of independent
Poisson random variables with the expectations (Pλ)i.

6.4

♥ In the PET Reconstruction problem, we are interested, given observations y, to find
the Maximum Likelihood estimate λ∗ of tracer’s density:

λ∗ = argmin
λ≥0

 n∑
j=1

pjλj −
m∑
i=1

yi ln(
∑
j

pijλj)

 [pj =
∑
i

pij] (PET)

(PET) is a nicely structured constrained convex program; the only difficulty – a true
one! – is in huge sizes of (PET): for problems of actual interest,
• the design dimension n varies from 300,000 to 3,000,000
• the number m of log-terms in the objective varies from 6,000,000 to 25,000,000

6.5

♣ As far as nonlinear programs are concerned, design dimension n ∼ 104 − 105 − 106

makes it necessary to use “cheap” algorithms – those with nearly linear in n arithmetic
cost of a step (otherwise you never will finish the very first iteration). This requirement
rules out all “advanced” polynomial time optimization techniques and leaves us with,
essentially, just two options:
I. Traditional tools of smooth unconstrained minimization: gradient descent, conjugate
gradients, quasi-Newton methods, etc.
II. Simple subgradient-type techniques for solving convex nonsmooth constrained opti-
mization problems:
subgradient descent, restricted memory bundle methods, etc.

6.6

• We are interested in extremely large-scale constrained convex problems, and thus
intend to focus on cheap subgradient-type techniques. The question of primary impor-
tance here is:
(?) What are the limits of performance of cheap optimization techniques?

• When answering (?), we shall restrict ourselves with the black-box-represented convex
programs. As a matter of fact, this is exactly the “working environment” for cheap
optimization algorithms.

6.7

Black-box-represented convex programs
and Information-based complexity

♣ Let us fix a family P(X) of convex programs

min
x
{f(x) : x ∈ X} ; (CP)

where X ⊂ Rn is a given instance-independent convex compact set, and f : Rn → R is
convex.
• Formally, P(X) is some family of convex objectives f : X → R.

6.8

min
x
{f(x) : x ∈ X} ; (CP)

♣ A black-box-oriented solution method B for P(X) is as follows:
• When starting to solve (CP), B is given an accuracy ε > 0, knows what is X, and
knows that f belongs to a given family P(X). However, B does not know in advance
what is the particular f it deals with and must “learn” f to solve the problem.
• When solving the problem, B has access to the First Order oracle for f . Given on
input x ∈ Rn, the oracle returns f(x) and a subgradient f ′(x) of f at x. B generates
a sequence of search points x1, x2, ... and calls the First Order oracle to get values and
subgradients of f at these points. The rules for building xt can be arbitrary, except for
the fact that they should be non-anticipative: xt can depend only on the information
f(x1), f ′(x1), ..., f(xt−1), f ′(xt−1) on f accumulated by B at the first t− 1 steps.
• After a number T = TB(f, ε) of calls to the oracle, B terminates and outputs a result
zB(f, ε) which should depend solely on the information on f accumulated by B at the T
search steps, and must be an ε-solution to (CP):

zB(f, ε) ∈ X & f(zB(f, ε))−minX f ≤ ε.

6.9

♣ The complexity of P(X) w.r.t. a solution method B is

ComplB(ε) = max
f∈P(X)

TB(f, ε)

which is the minimal number of steps sufficient for B to solve within accuracy ε every
instance of P(X).
♣ The Information-based complexity of a family P(X) of problems is

Compl(ε) = min
B

ComplB(ε),

the minimum being taken over all solution methods. Relation
Compl(ε) = N

means that
• there exists a solution method B capable to solve within accuracy ε every instance of
P(X) in no more than N calls to the First Order oracle;
• for every solution method B, there exists an instance of P(X) such that B solves the
instance within the accuracy ε in at least N steps.

♣ The information-based complexity Compl(ε) of a family P(X) is a lower bound on
“actual” computational effort, whatever it means, sufficient to find ε-solution to every
instance of the family.

6.10

Main results on Information-based complexity
of Convex Programming

♣ Let

X ⊂ Rn – a convex compact set, intX 6= ∅

P(X) =

{{
min
x∈X

f(x)

}
: f is convex on Rn and is normalized by max

X
f −min

X
f ≤ 1.

}
For the family P(X),
I. Complexity of finding high-accuracy solutions in fixed dimension is independent of the
geometry of X. Specifically,

∀(ε ≤ ε(X)) : O(1)n ln
(
2 + 1

ε

)
≤ Compl(ε);

∀(ε > 0) : Compl(ε) ≤ O(1)n ln
(
2 + 1

ε

)
,

where
O(1) are appropriately chosen positive absolute constants,
ε(X) depends on the geometry of X, but never is less than 1

n2 .

6.11

X ⊂ Rn – a convex compact set, intX 6= ∅

P(X) =

{
{minx∈X f(x)} : f is convex on Rn and normalized by maxX f −minX f ≤ 1.

}
II. Complexity of finding solutions of fixed accuracy in high dimensions does depend on
the geometry of X. Here are 3 typical results:
Let X = {x ∈ Rn : ‖x‖∞ ≤ 1}. Then

ε ≤ 1
2
⇒ O(1)n ln(1

ε
) ≤ Compl(ε) ≤ O(1)n ln(1

ε
). (‖ · ‖∞-Ball)

Let X = {x ∈ Rn : ‖x‖2 ≤ 1}. Then

n ≥
1

ε2
⇒

O(1)

ε2
≤ Compl(ε) ≤

O(1)

ε2
. (‖ · ‖2-Ball)

Let X = {x ∈ Rn : ‖x‖1 ≤ 1}. Then

n ≥
1

ε2
⇒

O(1)

ε2
≤ Compl(ε) ≤

O(lnn)

ε2
. (‖ · ‖1-Ball)

(O(1) in the lower bound can be replaced with O(lnn), provided that n� 1
ε2).

6.12

Compl(ε) ≥ O(1)n ln (2 + 1/ε) ∀(ε ≤ ε(X)) (I)

X = {x ∈ Rn : ‖x‖2 ≤ 1} ⇒ Compl(ε) ≤ O(1)
ε2 ∀(ε > 0) : (II)

♣ Consequences for large-scale convex minimization:
Bad news: I says that we have no hope to guarantee high-accuracy solutions (like
ε = 10−6) when solving large-scale problems with black-box-oriented methods: it would
require at least O(n) calls to the first order oracle with at least O(n) a.o. per call, i.e.,
totally at least O(n2) a.o. (with known methods – even O(n4) a.o.), which is too much
for large n...

Good news: II says that there exist cases when medium accuracy solutions can be
found in (nearly) dimension-independent number of oracle calls...

6.13

♣ Good news: There exist cases when medium accuracy solutions of convex programs

min
x∈X

f(x), max
X

f −min
X

f ≤ 1 (∗)

can be found in (nearly) dimension-independent number of oracle calls, e.g., the cases
of

X = B2
n ≡ {x ∈ Rn : ‖x‖2 ≤ 1} (‖ · ‖2-Ball)

or

X = B1
n ≡ {x ∈ Rn : ‖x‖1 ≤ 1} (‖ · ‖1-Ball)

(but, unfortunately, not the case when X is a box).

6.14

min
x∈X

f(x), max
X

f −min
X

f ≤ 1 (∗)

♣ Problems of minimizing over a ‖ · ‖p-ball, p = 1,2, are not that typical. Fortunately,
the corresponding (nearly) dimension-independent complexity bounds remain valid when
X in (∗) is a subset of a “good” set Bp

n, p = 1,2, and the normalization condition on f
in (∗) is strengthened to

|f(x)− f(y)| ≤ ‖x− y‖p ∀x, y ∈ X.

In particular, O(lnn
ε2) oracle calls are sufficient to minimize, within accuracy ε, a convex

function f over the standard simplex

∆n = {x ∈ Rn : x ≥ 0,
∑
i

xi = 1},

provided that f is Lipschitz continuous, with constant 1, w.r.t. ‖ · ‖1 (i.e., that the
magnitudes of all first order partial derivatives of f are ≤ 1).
♣ More good news: The nearly dimension independent complexity bounds for mini-
mization over ball and simplex are given by cheap minimization methods!

6.15

Where the lower complexity bounds come from?
(cases of ball and box)

♣ Let 2 ≤ p ≤ ∞ and X = {x : ‖x‖p ≤ 1}. Consider the families of convex functions

Fk = {f(x) ≡ max
1≤i≤k

[εixi + δi]} [k ≤ n]

given by all 2k collections εi = ±1 and all collections {δi}ki=1 with 0 ≤ δi ≤ 1
2k1/p.

Observe that when f ∈ Fk, the variation of f on X does not exceed 2, and the ‖ · ‖∞-
Lipschitz constant of f does not exceed 1.
We claim that

(!) For every k ≤ n, the 1
4k1/p-complexity of the class of problems minx∈X f(x)

is at least k − 1
whence, of course,

(!!) For 0 < ε < 1
4
, the ε-complexity of the class of optimization problems

minX f(x) with Lipschitz continuous, with constant 1 w.r.t. ‖ · ‖∞,
objectives f is at least min[n, b 1

4ε
cp]− 1.

6.16

♠ We should prove that if B is a method for solving problems

min
x∈X

fε,δ(x) = max
1≤i≤k

[εixi + δi] [X = {x ∈ Rn : ‖x‖p ≤ 1}]

which, as applied to every problem of this type, terminates after at most k − 1 steps,
then the accuracy to which the method solves at least one problem from the family is
worse than ε ≡ 1

2k1/p.
We lose nothing when assuming that B, as applied to every problem from the family,
performs exactly k steps, and the approximate solution is the last – the k-th – search
point.
♣ Let us associate with B the following construction:
First step. Let
• x1 be the first search point generated by B (this point depends solely on B),
• i1 be the index of the largest in absolute value coordinate of x1,
• ε∗i1 = ±1 be such that ε∗i1x

1
i1

= |x1
i1
|

• δ∗i1 = 1
2k1/p

We set

F1 =

{
f(x) = max

1≤i≤k
[εixi + δi] :

|εi| = 1, εi1 = ε∗i1,
δi1 = δ∗i1 > maxi6=i1 δi ≥ 0

}
Note: All functions from F1 coincide with each other in a neighbourhood of x1, so that
the Oracle, being asked at x1 about every one of the objectives from F1, reports the
same.

6.17

Step ` + 1, 1 ≤ ` < k. At the beginning of `-th step, we have ` points x1, ..., x` and a
set of objectives

F ` =

f(x) = max
1≤i≤k

[εixi + δi] :

|εi| = 1, i = 1, ..., k
εis = ε∗is, s = 1, ..., `
δis = δ∗is, s = 1, ..., `
δ∗i1 > ... > δ∗i` > maxi 6∈{i1,...,i`} δi ≥ 0

such that
(A`): x1, ..., x` are the first ` points of the trajectory of B as applied to every objective
f ∈ F `
(B`): for every s ≤ `, maxi6∈{i1,...,i`} |xsi | ≤ |xsis| = ε∗isx

s
is

At step `, we shrink F ` to F `+1 and extend {x1, ..., x`} to {x1, ..., x`+1} as follows:
• By (A`), x1, ..., x` are the first ` points of the trajectory of B applied to every one of
the objectives f ∈ F `, and by (B`) all these objectives are identically equal to each other
in a neighbourhood of {x1, ..., x`} ⇒ (`+ 1)-st point x`+1 of the trajectory of B as applied
to every one of the objectives f ∈ F ` is the same.
• Consider the coordinates of x`+1 with indexes different from i1, ..., i`, and let i`+1 be
the index of the largest in magnitude of these coordinates. We choose ε∗i`+1

= ±1 in such

a way that ε∗i`+1
x`+1
i`+1

= |x`+1
i`+1
| thus ensuring (B`+1), choose δ∗i`+1

∈ (0, δ∗i`) and set

F `+1 =

f(x) = max1≤i≤k[εixi + δi] :

|εi| = 1, i = 1, ..., k
εis = ε∗is, s = 1, ..., `+ 1
δis = δ∗is, s = 1, ..., `+ 1
δ∗i1 > ... > δ∗i`+1

> maxi 6∈{i1,...,i`+1} δi ≥ 0

thus ensuring (A`+1).

6.18

♣ After k steps of the construction, we end up with a single-function family

Fk = {fk(x) = max
1≤s≤k

[ε∗isxis + δ∗is]}

such that the trajectory x1, ..., xk of B as applied to fk(·) satisfies

ε∗isx
s
is ≥ 0, s = 1, ..., k,

whence, in particular, fk(xk) > 0. On the other hand,

min
x∈X

fk(x) ≤ −
1

k1/p
+ max

i
δ∗i = −

1

k1/p
+

1

2k1/p
= εk ≡ −

1

2k1/p
.

Thus, the result xk of B as applied to fk(·) is not an εk-solution of minX fk, as claimed.

6.19

Convention: From now on, speaking about optimization problem

min
x∈X

f(x), (∗)

we assume by default that
• X is nonempty closed and bounded convex subset of Euclidean space E (by default,
E = Rn)
• f(x) : X → R is convex and Lipschitz continuous:

∀(x, y ∈ X) : |f(x)− f(y)| ≤ L‖x− y‖ [L <∞]

Note: The property of f to be Lipschitz continuous is independent of the choice of
norm ‖ · ‖ on E; in contrast, the allowed values of the Lipschitz constant L do depend
on ‖ · ‖. In the sequel,

L‖·‖(f) = sup
x6=y,x,y∈X

|f(x)− f(y)|
‖x− y‖

stands for the best – the smallest – of the Lipschitz constants, taken w.r.t. ‖ · ‖, of a
Lipschitz continuous function f : X → R.

6.20

min
x∈X

f(x), (∗)

♠ Recall that a subgradient f ′(x) of a convex function f : X → R at a point x ∈ X is the
slope of a linear function which underestimates f everywhere on X and coincides with
f at x:

f(y) ≥ f(x) + 〈y − x, f ′(x)〉 ∀y ∈ X.
For Lipschitz continuous convex f , a norm ‖ · ‖ on E, and every x ∈ X there exists a
subgradient f ′(x) of f at x satisfying the norm bound

‖f ′(x)‖∗ ≤ L‖·‖(f) (!)[
‖z‖∗ = maxu:‖u‖≤1〈z, u〉

]
When x ∈ intX, the above relation holds true for every subgradient of f at x.
Convention: In the sequel, when speaking about First Order oracles for Lipschitz
continuous convex functions f , we always assume that the subgradients f ′(x) reported
by the oracles satisfy (!).

6.21

The simplest of the cheapest – Subgradient Descent
(N. Shor, 1967)

♣ The Subgradient Descent method (SD) for solving a convex program

min
x∈X

f(x) (P)

• X – convex compact set in Rn

• f – Lipschitz continuous on X convex function
is the recurrence

xt+1 = ΠX(xt − γtf ′(xt)) [x1 ∈ X] (SD)

where
• γt > 0 are stepsizes
• ΠX(x) = argminy∈X ‖x− y‖2

2 is the standard projector on X,
• f ′(x) is a subgradient of f at x:

f(y) ≥ f(x) + (y − x)Tf ′(x) ∀y ∈ X.

6.22

When, why and how SD converges?

xt+1 = ΠX(xt − γtf ′(xt)) (SD)

♣ We start with a simple geometric fact:
(!) Let X ⊂ Rn be a closed convex set, x ∈ Rn, and z = ΠX(x). Then the vector

e = x− z forms an obtuse angle with every vector of the form y − z, y ∈ X:
(x− z)T(y − z) ≤ 0 ∀y ∈ X.

In particular, y ∈ X ⇒ ‖y −ΠX(x)‖2
2 ≤ ‖y − x‖2

2 − ‖x−ΠX(x)‖2
2

x

y

z

In words: When projecting a point x onto a closed convex set X, the squared ‖ · ‖2

distance to any point from X is decreased by at least the squared ‖ · ‖2-distance from
the point x to its projection onto X.
Indeed, when y ∈ X and 0 ≤ t ≤ 1, one has

φ(t) = ‖ [ΠX(x) + t(y −ΠX(x))]︸ ︷︷ ︸
yt∈X

−x‖2
2 ≥ ‖ΠX(x)− x‖2

2 = φ(0),

whence 0 ≤ φ′(0) = 2(ΠX(x)− x)T(y −ΠX(x)). Consequently,

‖y − x‖2
2 = ‖y −ΠX(x)‖2

2 + ‖ΠX(x)− x‖2
2 + 2(y −ΠX(x))T(ΠX(x)− x) ≥ ‖y −ΠX(x)‖2

2 + ‖ΠX(x)− x‖2
2.

6.23

xt+1 = ΠX(xt − γtf ′(xt)) (SD)

♠ By Simple Geometric Fact, for every u ∈ X one has

‖xt+1 − u‖2
2 = ‖ΠX(xt − γtf ′(xt))− u‖2

2
≤ ‖xt − γtf ′(xt)− u‖2

2 = ‖xt − u‖2
2 − 2γt(xt − u)Tf ′(xt) + γ2

t ‖f ′(xt)‖2
2

and we arrive at

Corollary: For every u ∈ X one has

γt(xt − u)Tf ′(xt) ≤
1

2
‖xt − u‖2

2︸ ︷︷ ︸
dt

−
1

2
‖xt+1 − u‖2

2︸ ︷︷ ︸
dt+1

+1
2
γ2
t ‖f ′(xt)‖2

2

Note: Since f is convex, one has (xt − u)Tf ′(xt) ≥ f(xt) − f(u), which combines with
Corollary to yield

γt[f(xt)− f(u)] ≤
1

2
‖xt − u‖2

2︸ ︷︷ ︸
dt

−
1

2
‖xt+1 − u‖2

2︸ ︷︷ ︸
dt+1

+1
2
γ2
t ‖f ′(xt)‖2

2

6.24

f∗ = minx∈X f(x) (1)
xt+1 = ΠX(xt − γtf ′(xt)) (2)

γt[f(xt)− f(u)] ≤
1

2
‖xt − u‖2

2︸ ︷︷ ︸
dt

−
1

2
‖xt+1 − u‖2

2︸ ︷︷ ︸
dt+1

+1
2
γ2
t ‖f ′(xt)‖2

2 ∀u ∈ X (3)

Summing up inequalities (3) over t = T0, T0 + 1, ..., T , we get∑T
t=T0

γt(f(xt)− f(u)) ≤ dT0
− dT+1︸ ︷︷ ︸
≤Θ

+
∑T

t=T0

1
2
γ2
t ‖f ′(xt)‖2

2[
Θ = maxx,y∈X

1
2
‖x− y‖2

2

]
Setting u = x∗ ≡ argminX f , we arrive at the bound

∀(T, T0, T ≥ T0 ≥ 1) : εT ≡ min
t≤T

f(xt)− f∗ ≤
Θ+1

2

∑T

t=T0
γ2
t ‖f ′(xt)‖2

2∑T

t=T0
γt

6.25

∀(T, T0, T ≥ T0 ≥ 1) : εT ≡ mint≤T f(xt)− f∗ ≤
Θ+1

2

∑T

t=T0
γ2
t ‖f ′(xt)‖2

2∑T

t=T0
γt

♣ The resulting relation leads to various convergence results.
Example 1: “Divergent Series”. Let γt → 0 as t→∞, while

∑
t γt =∞. Then

lim
T→∞

εT = 0.

Proof. Set T0 = 1 and note that∑T
t=1 γ

2
t ‖f ′(xt)‖2

2∑T
t=1 γt

≤ L2
‖·‖2

(f)

∑T
t=1 γ

2
t∑T

t=1 γt
→ 0, T →∞.

6.26

f∗ = minx∈X f(x)
⇓

∀(T, T0, T ≥ T0 ≥ 1) : εT ≡ mint≤T f(xt)− f∗ ≤
Θ+1

2

∑T

t=T0
γ2
t ‖f ′(xt)‖2

2∑T

t=T0
γt[

Θ = 1
2

maxx,y∈X ‖x− y‖2
2

]
Example 2: “Optimal stepsizes”:

γt =

√
2Θ

‖f ′(xt)‖2
√
t
⇒ εT ≡ mint≤T f(xt)− f∗ ≤ O(1)L‖·‖2(f)

√
Θ√

T
, T ≥ 1

Proof. Setting T0 =cT/2b, we get

εT ≤
[
Θ + Θ

∑T
t=T0

t−1
] [∑T

t=T0

√
2Θ√

t‖f ′(xt)‖2

]−1
≤
[
Θ + Θ

∑T
t=T0

t−1
] [∑T

t=T0

√
2Θ√

tL‖·‖2(f)

]−1

≤ L‖·‖2
(f)
√

Θ1+O(1)
O(1)

√
T

= O(1)L‖·‖2(f)
√

Θ√
T

[note that with T0 =cT/2b we have
∑T

T0
t−1 = O(1) and

∑T
T0

1√
t

= O(1)
√
T].

6.27

f∗ = minx∈X f(x)

⇒ xt+1 = ΠX(xt − γtf ′(x(t))), γt = maxx,y∈X ‖x−y‖2√
t‖f ′(xt)‖2

⇒ εT ≡ min1≤t≤T f(xt)− f∗ ≤ O(1)

Var‖·‖2,X(f)︷ ︸︸ ︷
L‖·‖2

(f) max
x,y∈X

‖x− y‖2 /
√
T

Good news: We have arrived at efficiency estimate which is dimension-independent,
provided that the “‖ · ‖2-variation” of the objective on the feasible domain

Var‖·‖2,X(f) = L‖·‖2
(f) max

x,y∈X
‖x− y‖2

is fixed. Moreover, when X is a Euclidean ball in Rn, this efficiency estimate “is as
good as an efficiency estimate of a black-box-oriented method can be”, provided that
the dimension is large:

n ≥
(
Var‖·‖2,X(f)/ε

)2

6.28

εT ≡ min1≤t≤T f(xt)− f∗ ≤ O(1)Var‖·‖2,X(f)/
√
T[

Var‖·‖2,X(f) = L‖·‖2
(f) maxx,y∈X ‖x− y‖2

]
Bad news: Our “dimension-independent” efficiency estimate
• is pretty slow
• is indeed dimension-independent only for problems with “Euclidean geometry” – those
with moderate ‖ · ‖2-variation. As a matter of fact, in some (but not all!) important
applications problems of this type are pretty rare.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−2

10
−1

10
0

10
1

10
2

SD as applied to min‖x‖2≤1 ‖Ax− b‖1, A : 50× 50

[red: efficiency estimate; blue: actual error]

6.29

xt+1 = ΠX(xt − γtf ′(x(t)))

♣ An evident drawback of SD is that all information on the objective accumulated so
far is “summarized” in the current iterate, and this “summary” is very incomplete. With
better usage of past information, one arrives at bundle methods which outperform SD
significantly in practice, while preserving the most attractive theoretical property of SD
– dimension-independent and optimal, in favourable circumstances, rate of convergence.

6.30

Bundle-Level method for solving f∗ = minx∈X f(x)

♣ At the beginning of step t of BL, we have at our disposal
— the first-order information {f(xτ), f ′(xτ)}1≤τ<t on f along the previous search points
xτ ∈ X, τ < t;
— current iterate xt ∈ X.
♣ At step t we
— compute f(xt), f ′(xt); this information, along with the past first-order information on
f , provides is with the current model of the objective

ft(x) = max
τ≤t

[f(xτ) + (x− xτ)Tf ′(xτ)]

This model underestimates the objective and is exact at the points x1, ..., xt;
— define the best found so far value f t = minτ≤t f(xτ) of f
— define the current lower bound ft on f∗ by solving the auxiliary problem

ft = min
x∈X

ft(x) (LPt)

Note: current gap ∆t = f t − ft upper-bounds the inaccuracy of the best found so far
solution;
• compute the current level `t = ft + λ∆t (λ ∈ (0,1) is a parameter)
• build a new search point by solving the auxiliary problem

xt+1 = argmin
x
{‖x− xt‖2

2 : x ∈ X, ft(x) ≤ `t} (QPt)

and loop to step t+ 1.

6.31

t

• blue: the objective f
• ∗: x1, x2, x3

• magenta: current piecewise linear model f3(·) of f
• cyan horizontal lines: t = mini≤3 f(xi) and t = minx f3(x)
• red horizontal line: t = `3

• red circle: new iterate x4

6.32

t

Note: It seems to be more intuitive to “fully trust” in model and take, as the next
iterate, the minimizer of the model or, which is the same, to set the level `t equal to ft
rather than to

`t = ft + λ∆t ∆t = min
τ≤t

f(xτ)− ft. [λ ∈ (0,1), usually λ = 0.5]

Unfortunately, the resulting Kelley method has disastrously bad theoretical complexity
(and from time to time exhibits disastrously bad actual performance).

6.33

How BL converges?

Claim: For every ε, 0 < ε < ∆1, the number N of steps before a gap ≤ ε is obtained
(i.e., before an ε-solution is found) does not exceed the bound

N(ε) =
Var2

‖·‖2,X
(f)

λ(1− λ)2(2− λ)ε2
,

⇒ Inaccuracy after T = 1,2, ... steps is upper-bounded by

C(λ)
Var‖·‖2,X(f)
√
T

— the same efficiency estimate as for SD with optimal stepsizes.

6.34

Why and how BL converges?

Preliminary observations:
♠ The models ft(x) = maxτ≤t[f(xτ) + (x− xτ)Tf ′(xτ)] grow with t and underestimate f ,
while the best found so far values of the objective decrease with t and overestimate f∗.
Thus,

f1 ≤ f2 ≤ f3 ≤ ... ≤ f∗
f1 ≥ f2 ≥ f3 ≤ ... ≥ f∗

∆1 ≥∆2 ≥ ... ≥ 0

♠ Let us say that a group of subsequent iterations J = {s, s+ 1, ..., r} form a segment,
if ∆r ≥ (1− λ)∆s. We claim that If J = {s, s+ 1, ..., r} is a segment, then
(i) All the sets Lt = {x ∈ X : ft(x) ≤ `t}, t ∈ J, have a point in common, specifically,
(any) minimizer u of fr(·) over X;

(ii) For t ∈ J, one has ‖xt − xt+1‖2 ≥ (1−λ)∆r

L‖·‖2(f)
.

6.35

We claim that if J = {s, s+ 1, ..., r} is a segment, then
(i) All the sets Lt = {x ∈ X : ft(x) ≤ `t}, t ∈ J, have a point in common,
specifically, (any) minimizer u of fr(·) over X;

(ii) For t ∈ J, one has ‖xt − xt+1‖2 ≥ (1−λ)∆r

L‖·‖2(f)
.

Indeed,
(i): for t ∈ J we have

ft(u) ≤ fr(u) = fr = f r −∆r ≤ f t −∆r ≤ f t − (1− λ)∆s ≤ f t − (1− λ)∆t = `t.

(ii): We have ft(xt) = f(xt) ≥ f t, and ft(xt+1) ≤ `t = f t− (1−λ)∆t. Thus, when passing
from xt to xt+1, t-th model decreases by at least (1 − λ)∆t ≥ (1 − λ)∆r. It remains to
note that ft(·) is Lipschitz continuous w.r.t. ‖ · ‖2 with constant L‖·‖2

(f).

6.36

(ii) For t ∈ J, one has ‖xt − xt+1‖2 ≥ (1−λ)∆r

L‖·‖2(f)
.

♣ Main observation: The cardinality of a segment J = {s, s+ 1, ..., r} of iterations can
be bounded as follows:

Card(J) ≤
Var2

‖·‖2,X
(f)

(1− λ)2∆2
r

.

Indeed, when t ∈ J, the sets Lt = {x ∈ X : ft(x) ≤ `t} have a point u in common, and
xt+1 is the projection of xt onto Lt. It follows that

‖xt+1 − u‖2
2 ≤ ‖xt − u‖2

2 − ‖xt − xt+1‖2
2 ∀t ∈ J

⇒
∑

t∈J ‖xt − xt+1‖2
2 ≤ ‖xs − u‖2

2 ≤ maxx,y∈X ‖x− y‖2
2

⇒ Card(J) ≤
maxx,y∈X ‖x− y‖2

2

mint∈J ‖xt − xt+1‖2
2

⇒ Card(J) ≤
L2
‖·‖2

(f) maxx,y∈X ‖x− y‖2
2

(1− λ)2∆2
r

[by (ii)]

Corollary: For every ε, 0 < ε < ∆1, the number N of steps before a gap ≤ ε is obtained
(i.e., before an ε-solution is found) does not exceed the bound

N(ε) =
Var2

‖·‖2,X
(f)

λ(1− λ)2(2− λ)ε2
.

6.37

Proof of Corollary. Assume that N is such that ∆N > ε, and let us bound N from
above.
• Let us split the set of iterations I = {1, ..., N} into segments J1, ..., Jm as follows: •
J1 is the maximal segment which ends with iteration N :

J1 = {t : t ≤ N, (1− λ)∆t ≤∆N}
• J1 is certain group of subsequent iterations {s1, s1 + 1, ..., N}. If J1 differs from I:
s1 > 1, we define J2 as the maximal segment which ends with iteration s1 − 1:

J2 = {t : t ≤ s1 − 1, (1− λ)∆t ≤∆s1−1} = {s2, s2 + 1, ..., s1 − 1}
• If J1∪J2 differs from I: s2 > 1, we define J3 as the maximal segment which ends with
iteration s2 − 1:

J3 = {t : t ≤ s2 − 1, (1− λ)∆t ≤∆s2−1} = {s3, s3 + 1, ..., s2 − 1}
and so on.
• As a result, I will be partitioned “from the end to the beginning” into segments of
iterations J1, J2,...,Jm. Let d` be the gap corresponding to the last iteration from J`.
By maximality of segments J`, we have

d1 ≥∆N > ε& d`+1 > (1− λ)−1d`, ` = 1,2, ...,m− 1

whence

d` > ε(1− λ)−(`−1).

We now have

N =
∑m

`=1 Card(J`) ≤
∑m

`=1
Var2

‖·‖2,X
(f)

(1−λ)2d2
`

≤ Var2

‖·‖2,X
(f)

(1−λ)2

∑m
`=1(1− λ)2(`−1)ε−2

≤ Var2

‖·‖2,X
(f)

(1−λ)2ε2

∑∞
`=1(1− λ)2(`−1) =

Var2

‖·‖2,X
(f)

(1−λ)2[1−(1−λ)2]ε2 = N(ε).

6.38

♣ We have seen that Bundle-Level shares the dimension-independent (and optimal in
the “favourable” large-scale case) theoretical complexity bound
For every ε > 0, the number of steps before an ε-solution to convex program minx∈X f(x)
is found, does not exceed

O(1)
(

Var‖·‖2,X(f)
ε

)2
.

♣ There exists quite convincing experimental evidence that Bundle-Level obeys the
optimal in fixed dimension “polynomial time” complexity bound:
For every ε ∈ (0,VarX(f) ≡ maxX f −minX f), the number of steps before an ε-solution

to convex program minx∈X f(x) with X ⊂ Rn is found, does not exceed n ln
(

VarX(f)
ε

)
+1.

♠ Experimental rule: When solving convex program with n variables by BL, every n
steps add new accuracy digit.

6.39

Illustration: minx:‖x‖2≤1 f(x) ≡ ‖Ax− b‖1, dimx = 50 (f(0) = 2.61, f∗ = 0)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−2

10
−1

10
0

10
1

10
2

SD, accuracy vs. iteration count. blue: errors; red: efficiency estimate 3
Var‖·‖2,X(f)

√
t

;ε10000 = 0.084

0 50 100 150 200 250
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

BL, accuracy vs. iteration count. blue: errors; red: efficiency estimate e−t/nVarX(f); ε233 < 1.e− 4

6.40

♣ In BL, the number of linear constraints in the auxiliary problems

ft = minx∈X ft(x) (LPt)
xt+1 = argminx

{
‖xt − x‖2

2 : x ∈ X, ft(x) ≤ `t
}

(QPt)

is equal to the size t of the current bundle – the collection of affine forms gτ(x) =
f(xτ) + (x − xτ)Tf ′(xτ) participating in the model ft(·). Thus, the complexity of an
iteration in BL grows with the iteration number. In order to suppress this phenomenon,
one needs a mechanism for shrinking the bundle (and thus – simplifying the models of
f).
♠ The simplest way of shrinking the bundle is to initialize d as ∆1 and to run plain BL
until an iteration t with ∆t ≤ d/2 is met. At such an iteration, we
— shrink the current bundle, keeping in it the minimum number of the forms gτ sufficient
to ensure that

ft ≡ min
x∈X

max
1≤τ≤t

gτ(x) = min
x∈X

max
selected τ

gτ(x)

(this number is at most n),
— reset d as ∆t,
and proceed with plain BL until the gap is again reduced by factor 2, etc.
♣ Computational experience demonstrates that the outlined approach does not slow BL
down, while keeping the size of the bundle below the level of about 2n.

6.41

Truncated Proximal Level Method for minx∈X f(x)

♣ The Truncated Proximal Level method has the same efficiency estimate as SD and
BL, but keeps the cardinality of bundle not exceeding a given level m (which can be as
small as 1).

♣ Playing with m, one can trade “practical rate of convergence” for arithmetic com-
plexity of an iteration, which is important when solving large-scale problems.

6.42

Truncated Proximal Level Method for minx∈X f(x) – construction

♣ The Truncated Proximal Level method keeps the cardinality of bundle not exceeding
a given level m.
♣ Execution of TLM is split into phases. Phase s is associated with
• prox-center cs ∈ X
• s-th upper bound f s on f∗, which is the best value of the objective observed before
the phase begins
• s-th lower bound fs on f∗, which is the best lower bound on f∗ observed before the
phase begins
• f s and fs define
♦ s-th optimality gap ∆s = f s − fs
♦ s-th level `s = fs + λ∆s, where λ ∈ (0,1) is parameter of the method.

• current model f̃ s(·) ≤ f(·) of f(·), which is the maximum of ≤ m affine forms.
♠ To initialize the first phase, we choose c1 ∈ X, compute f(c1), f ′(c1) and set

f̃1(x) = f(c1) + (x− c1)Tf ′(c1), f1 = f(c1), f1 = min
x∈X

f̃1(x).

6.43

♣ At the beginning of step t = 1,2, ... of phase s, we have at our disposal
• upper bound f s,t−1 ≤ f s on f∗, which is the best found so far value of the objective,
• lower bound fs,t−1 ≥ fs on f∗,

• model f̃ s,t−1(·) ≤ f(·) of the objective which is the maximum of ≤ m affine forms
• iterate xt ∈ X and set

Ht−1 = {x : αTt−1x ≥ βt−1}
such that

x ∈ X, f(x) ≤ `s ⇒ x ∈ Ht−1 (at)
xt = argminx

{
‖x− cs‖2

2 : x ∈ X ∩Ht−1
}

(bt)

♠ To initialize the first step of phase s, we set

f s,0 = f s, fs,0 = fs, f̃
s,0(·) = f̃ s(·), α0 = 0, β0 = 0 [⇒ H0 = Rn]

thus ensuring (a1), and set x1 = cs, thus ensuring (b1).

6.44

Step t phase s: Given
• bounds f s,t−1 ≥ f∗, fs,t−1 ≤ f∗, • model f̃ s,t−1(·) ≤ f(·),
• xt and Ht−1 = {x : αTt−1x ≥ βt−1} such that

x ∈ X, f(x) ≤ `s ⇒ x ∈ Ht−1 (at) & xt = argminx
{
‖x− cs‖2

2 : x ∈ X ∩Ht−1
}

(bt)

1. we compute f(xt), f ′(xt) and set gt(x) = f(xt) + (x− xt)Tf ′(xt);
2. we define f̃ s,t(·) as the maximum of gt(·) and affine forms associated with f̃ s,t−1

(dropping, if necessary, one of the latter forms to make f̃ t,s the maximum of at most
m forms). If f(xt) ≤ `s + 0.5(f s − `s) (“significant progress in the upper bound”), we
terminate phase s and set

f s+1 = f s,t, fs+1 = fs,t−1, f̃ s+1(·) = f̃ s,t(·),
otherwise we proceed as follows:

3. we compute ft = minx
{
f̃ s,t(x) : x ∈ Ht−1 ∩X

}
. Since f(x) ≥ `s in X\Ht−1, we have

f∗ ≥ min[`s, ft], so that fs,t ≡ max {fs,t−1,min[`s, ft]} ≤ f∗. If fs,t ≥ `s− 0.5(`s− fs) (“signif-
icant progress in the lower bound”), we terminate phase s and set

f s+1 = f s,t, fs+1 = fs,t, f̃ s+1(·) = f̃ s,t(·)
otherwise we set

xt+1 = argminx
{
‖x− cs‖2

2 : x ∈ X ∩Ht−1, f̃ s,t(x) ≤ `s
}

Ht = {x : (xt+1 − cs)T(x− xt+1) ≥ 0}
and loop to step t+ 1 of phase s.

6.45

Step of TPL

6.46

xt+1 = argminx
{
‖x− cs‖2

2 : x ∈ X ∩Ht−1, f̃ s,t(x) ≤ `s
}

(1)

Ht = {x : (xt+1 − cs)T(x− xt+1) ≥ 0} (2)

Note: When passing to step t+ 1, we have ensured the relations

x ∈ X, f(x) ≤ `s ⇒ x ∈ Ht (at+1)

xt+1 = argminx
{
‖x− cs‖2

2 : x ∈ X ∩Ht, f̃ s,t(x) ≤ `
}

(bt+1)

Indeed, xt+1 is the minimizer of ωs(x) ≡ 1
2
‖x− cs‖2

2 on the set

Yt = X ∩Ht−1 ∩ {x : f̃ t,s(x) ≤ `s}
whence

[

xt+1−cs︷ ︸︸ ︷
ω′s(xt+1)]T(x− xt+1) ≥ 0 ∀x ∈ Yt

⇓
Yt ⊂ Ht = {x : [ω′s(xt+1)]T(x− xt+1) ≥ 0} (∗)

Thus,

(x ∈ X, f(x) ≤ `s) ⇒︸︷︷︸
(at)

(x ∈ X ∩Ht−1, f(x) ≤ `s)

⇒ (x ∈ X ∩Ht−1, f̃
s,t(x) ≤ `s)︸ ︷︷ ︸

x∈Yt

⇒︸︷︷︸
(∗)

x ∈ Ht

as required in (at+1). (bt+1) readily follows from the definition of Ht.

6.47

Convergence of TPL

♣ Preliminary observations:
• When passing from phase s to phase s + 1, the optimality gap is decreased at least
by the factor

θ(λ) =
min[1 + λ,2− λ]

2
.

Indeed, phase s can be terminated at step t due to significant progress either in the
upper bound on f∗: f s+1 = f s,t ≤ `s + 1

2
(f s − `s)

⇒∆s+1 = f s+1 − fs+1 ≤
1

2
`s +

1

2
f s − fs =

1 + λ

2
∆s

or in the lower bound: fs+1 = fs,t ≥ `s − 1
2
(`s − fs)

⇒∆s+1 = f s+1 − fs+1 ≤ f s −
1

2
fs −

1

2
`s =

2− λ
2

∆s

6.48

• Let xt, xt+1 be two subsequent search points of phase s. Then

‖xt − xt+1‖2 >
(1− λ)∆s

2L‖·‖2
(f)

.

Indeed, we have f(xt) = gt(xt) = f̃ s,t(xt) ≥ `s + 1
2
(f s − `s), since otherwise phase s would

be terminates at step t. At the same time, gt(xt+1) ≤ f̃ s,t(xt+1) ≤ `s. Thus, passing
from xt to xt+1, we decrease Lipschitz continuous, with constant L‖·‖2

(f) w.r.t. ‖ · ‖2,

function gt(·) by at least 1
2
(f s − `s) = 1−λ

2
∆s.

6.49

♣ Main observation: Number of steps at phase s does not exceed

Ns =
4V 2
‖·‖2,X

(f)

(1− λ)2∆2
s

+ 1. (∗)

Indeed, let the number of steps of the phase be > N . By construction, xt+1 ∈ Ht−1 and
xt is the minimizer of ωs(x) = 1

2
‖x− cs‖2

2 on Ht−1, whence

1 ≤ t ≤ N ⇒ ωs(xt+1) = ωs(xt) + (xt+1 − xt)Tω′s(xt)︸ ︷︷ ︸
≥0

+1
2
‖xt − xt+1‖2

2 ≥ ωs(xt) + 1
2
‖xt − xt+1‖2

2.

It follows that
∑N

t=1

1

2
‖xt − xt+1‖2

2︸ ︷︷ ︸
≥ (1−λ)2∆2

s

8L2
‖·‖2

(f)

≤ 1
2

maxx,y∈X ‖y − x‖2
2, whence N ≤ 4V 2

‖·‖2,X
(f)

(1−λ)2∆2
s

.

♣ Same as in the case of BL, (∗) combines with the relation ∆s+1 ≤ θ(λ)∆s to yield the
following
Corollary: For every ε, 0 < ε < ∆1, the total number of TPL steps before a gap ≤ ε is
obtained (i.e., before an ε-solution is found) does not exceed the bound

N(ε) = c(λ)
Var2

‖·‖2,X
(f)

ε2
.

6.50

f∗ = min
x∈X

f(x) (∗)

From Gradient to Mirror Descent
♣ Subgradient Descent method and its bundle versions are “intrinsically adjusted” to
problems with Euclidean geometry; this is where the role of the ‖ · ‖2-variation of the
objective

Var‖·‖2,X(f) = L‖·‖2
(f) max

x,x′∈X
‖x− x′‖2

in the efficiency estimate

min
t≤T

f(xt)− f∗ ≤ O(1)
Var‖·‖2,X(f)
√
T

comes from.
♣ An extension of SD and its bundle versions onto problems with “nice non-Euclidean
geometry” is offered by the Mirror Descent scheme.

6.51

Mirror Descent – Building Blocks

♣ Building block #1: Distance-Generating Function.
♠ A SD step

x 7→ x+ = ΠX(x− γf ′(x)) (1)

can be viewed as follows: given an iterate x ∈ X, we
1) Compute f ′(x)
2) Perform the prox-step x 7→ x+ = Proxx(γf ′(x))

Proxx(ξ) := argmin
u∈X

[〈ξ, u〉+ Vx(u)]︸ ︷︷ ︸
ξ 7→ Proxx(ξ): prox-mapping with prox-center x

Vx(u) = ω(u)− ω(x)− 〈u− x,∇ω(x)〉

where

ω(u) =
1

2
‖u‖2

2 (2)

is a specific “distance-generating function.”
Indeed, with the above ω(·), we have

Vx(u) := 1
2
uTu− xT(u− x)− 1

2
xTx = 1

2
‖u− x‖2

2
⇓

Proxx(ξ) = argmin
u∈X

[
ξTu+ 1

2
(u− x)T(u− x)

]
= argmin

u∈X

1
2
‖u− (x− ξ)‖2

2 = ΠX(x− ξ)

6.52

Proxx(ξ) = argminu∈X [〈ξ, u〉+ Vx(u)]
Vx(u) = ω(u)− ω(x)− 〈∇ω(x), u− x〉

♠ The “Main Inequality”

x+ = ΠX(x− γf ′(x))⇒ ∀u ∈ X : γ〈f ′(x), x− u〉 ≤ 1
2
‖x− u‖2

2 −
1
2
‖x+ − u‖2

2 + 1
2
γ2‖f ′(x)‖2

2

underlying all our convergence and rate-of-convergence results is an immediate corollary
of the following “Magic Inequality:”

(!) With convex and continuously differentiable ω(·) : X → R for all x ∈ X, ξ ∈ Rn

one has:

x+ = Proxx(ξ)⇒ ∀u ∈ X : 〈ξ, x+ − u〉 ≤ Vx(u)− Vx+(u)− Vx(x+)

where Vx(u) = ω(u)− [ω(x) + 〈u− x,∇ω(x)〉] is the generated by ω(·) Bregman
distance from u to x, u, x ∈ X.

as applied to ω(u) ≡ 1
2
uTu.

6.53

• Justifying Magic Inequality:

x+ = argminu∈X [〈ξ, u〉+ Vx(u)]⇒ ∀u ∈ X : 〈ξ −∇ω(x) +∇ω(x+), u− x+〉 ≥ 0
[optimality conditions]

⇔ ∀u ∈ X : 〈ξ, x+ − u〉 ≤ 〈∇ω(x+)−∇ω(x), u− x+〉
= [ω(u)− ω(x)− 〈∇ω(x), u− x〉]
−[ω(u)− ω(x+)− 〈∇ω(x+), u− x+〉]
−[ω(x+)− ω(x)− 〈∇ω(x), x+ − x]

= Vx(u)− Vx+(u)− Vx(x+)

• Magic Inequality ⇒ Main Inequality: As we know, with ω(u) = 1
2
‖u‖2

2 we have
ΠX(x− ξ) = Proxx(ξ). Thus,

x+ = ΠX(x− γf ′(x))⇒ x+ = Proxx(γf ′(x))
⇒ ∀u ∈ X : 〈γf ′(x), x+ − u〉 ≤ Vx(u)− Vx+(u)− Vx(x+)
⇒ ∀u ∈ X : 〈γf ′(x), x− u〉 ≤ Vx(u)− Vx+(u) + [〈γf ′(x), x− x+〉 − Vx(x+)]︸ ︷︷ ︸

δ

With our ω(·), Vx(x+) = 1
2
‖x− x+‖2

2, whence

δ = 〈γf ′(x), x− x+〉 −
1

2
‖x− x+‖2

2 ≤
1

2
‖γf ′(x)‖2

2,

and we arrive at the Main Inequality.

6.54

Distance-Generating Functions

♣ Let ‖ · ‖ be a norm on Rn. A function ω(·) : X → R is called Distance-Generating
Function (DGF) for X compatible with ‖ · ‖, if
— ω(·) : X → R is convex and continuously differentiable
— ω(·) is strongly convex, modulus 1, w.r.t. ‖ · ‖, that is,

∀x, y ∈ X : 〈∇ω(x)−∇ω(y), x− y〉 ≥ ‖y − x‖2

or, equivalently,

∀(x ∈ X,u ∈ X) : Vx(u) := ω(u)− ω(x)− 〈u− x,∇ω(x), 〉 ≥ 1
2
‖u− x‖2.

• Vx(u) is called Bregman distance from u to x generated by DGF ω

Note: For every convex compact set X ⊂ Rn, the function ω(u) = 1
2
‖u‖2

2 restricted to

X is a DGF compatible with ‖ · ‖ = ‖ · ‖2. For this DGF, Vx(y) = 1
2
‖y − x‖2

2.

6.55

∀(x ∈ X,u ∈ X) : Vx(u) := ω(u)− ω(x)− 〈∇ω(x), u− x〉 ≥ 1
2
‖u− x‖2.

Fact: Whenever ω(·) is a DGF for X compatible with ‖ · ‖,
for x ∈ X, ξ ∈ Rn, the prox-mapping

x+ = Proxx(ξ) := argminu∈X [〈ξ, u〉+ Vx(u)]

is well-defined, takes values in X, and ensures that

∀(u ∈ X) : 〈ξ, x+ − u〉 ≤ Vx(u)− Vx+(u)− Vx(x+), (1)

whence also

∀(u ∈ X) : 〈ξ, x− u〉 ≤ Vx(u)− Vx+(u) +
1

2
‖ξ‖2

∗ , (2)

where ‖ · ‖∗ is the norm conjugate to ‖ · ‖:

‖ξ‖∗ = max
x
{〈ξ, x〉 : ‖x‖ ≤ 1} .

6.56

Vx(u) = ω(u)− ω(x)− 〈u− x,∇ω(x)〉 ≥ 1
2
‖u− x‖2

x+ = Proxx(ξ) := argminu∈X [〈ξ, u〉+ Vx(u)]

Claims:

∀(u ∈ X) : 〈ξ, x+ − u〉 ≤ Vx(u)− Vx+(u)− Vx(x+) (1)
∀(u ∈ X) : 〈ξ, x− u〉 ≤ Vx(u)− Vx+(u) + 1

2
‖ξ‖2

∗ (2)

Indeed, as we have seen, (1) follows from optimality conditions as applied to the problem
defining x+. To derive (2) from (1), we need to show that

〈ξ, x− x+〉 − Vx(x+) ≤ 1
2
‖ξ‖2

∗,
which is immediate due to

〈ξ, x− x+〉 ≤ ‖ξ‖∗‖x− x+‖ & Vx(x+) ≥
1

2
‖x− x+‖2.

6.57

♣ Conclusion: Subgradient Descent step

x 7→ x+ = ΠX(x− γf ′(x)) (1)

is nothing but the prox-step

x 7→ x+ = argmin
y∈X

[〈γf ′(x), y〉+ Vx(y)]

Vx(y) = ω(y)− [ω(x) + 〈y − x,∇ω(x)〉]
(∗)

associated with the specific distance-generating function

ω(u) =
1

2
uTu (2)

6.58

X 3 x 7→ x+ = argminy∈X [〈ξ, y〉+ Vx(y)] (∗)
⇒ ∀(u ∈ X) : 〈ξ, x− u〉 ≤ Vx(u)− Vx+(u) + 1

2
‖ξ‖2

∗ (2)[
Vx(u) = ω(u)− [〈u− x,∇ω(x)〉+ ω(x)]

ω(z) : X → R : continuously differentiable & 〈∇ω(x)−∇ω(y), x− y〉 ≥ ‖x− y‖2

]
♣ Building block #2: the potential. Convergence analysis of SD was based on the
ensured by SD step inequality

∀u ∈ X : γ〈f ′(x), x− u〉 ≤
1

2
‖x− u‖2

2 −
1

2
‖x+ − u‖2

2︸ ︷︷ ︸
= Vx(u)− Vx+(u)

+1
2
‖γf ′(x)‖2

2 (3)

where Vx stems from ω(·) = 1
2
‖ · ‖2

2. This inequality states that when ω(·) = 1
2
‖ · ‖2

2, a SD
iteration x 7→ x+ reduces the “potential” – the Bregman distance

Vx(u) = ω(u)− [ω(x) + 〈u− x,∇ω(x)〉] = 1
2
(u− x)T(u− x)

from u ∈ X to the iterate by at least γ〈f ′(x), x− u〉 −O(γ2).
♠ (2) says that when ω(·) is continuously differentiable and strongly convex, modulus 1
w.r.t. ‖ · ‖, on X:

〈∇ω(u)−∇ω(v), u− v〉 ≥ ‖u− v‖2 ∀u, v ∈ X
prox-step x 7→ x+ = argminy∈X [〈γf ′(x), y〉+ Vx(y)] ensures inequality similar to (3):

∀u ∈ X : γ〈f ′(x), x− u〉 ≤ Vx(u)− Vx+(u) + 1
2
γ2‖f ′(x)‖2

∗
[‖ξ‖∗ = maxu {〈ξ, u〉 : ‖u‖ ≤ 1}] (!)

6.59

Non-Euclidean SD – Mirror Descent

min
x∈X

f(x) (P)

• X: convex compact set in Euclidean space E
• f : Lipschitz continuous convex function on X
♣ Setup for MD (”Proximal Setup”) is given by
— norm ‖ · ‖ on E
— DGF (Distance-Generating Function) ω(·) : X → R which should be continuously

differentiable and strongly convex, modulus 1 w.r.t. ‖ · ‖, function on X:
〈∇ω(u)−∇ω(v), u− v〉 ≥ ‖u− v‖2 ∀u, v ∈ X

♠ ω(·) and ‖ · ‖ define the important parameter — ω-capacity of X
Θ = maxu,v∈X [Vv(u) := ω(u)− ω(v)− 〈∇ω(v), u− v〉]

Note: With “Ball setup” ω(u) = 1
2
〈u, u〉, ‖u‖ ≡ ‖u‖2 =

√
〈u, u〉 one has

Θ = 1
2

maxu,v∈X ‖u− v‖2
2 .

♣ As applied to (P), MD generates search points xt according to

x1 ∈ X, xt+1 = Proxxt(γtf
′(xt)) := argmin

y∈X
[〈γtf ′(xt), y〉+ Vxt(y)] ,

Vx(y) = ω(y)− [ω(x) + 〈y − x,∇ω(x)〉]
(MD)

where γt > 0 are stepsizes.

6.60

xt+1 = Proxxt(γtf
′(xt)) := argmin

y∈X

[
〈γtf ′(xt), y〉+ Vxt(y)

]
(MD)

Note:
• With Ball setup, (MD) becomes exactly the SD recurrence

xt+1 = ΠX(xt − γtf ′(xt))
• In order for (MD) to be practical, a step should be easy to implement. Thus, X and
ω(·) should fit each other, meaning that auxiliary problems

min
y∈X

[〈ζ, y〉+ ω(y)]

should be easy to solve.

6.61

Why and how MD converges?

{minx∈X f(x), ω(·)} ⇒ xt+1 = argminy∈X [〈γtf ′(xt), y〉+ Vxt(y)]
Vx(y) = ω(y)− [ω(x) + 〈y − x,∇ω(x)〉]

We have seen that MD step ensures inequality

∀u ∈ X : γt〈f ′(xt), xt − u〉 ≤ Vxt(u)− Vxt+1(u) + 1
2
γ2
t ‖f ′(xt)‖2

∗

It follows that for positive integers T0 ≤ T one has

T∑
t=T0

γt 〈f ′(xt), xt − u〉︸ ︷︷ ︸
≥f(xt)−f(u)

≤ VxT0
(u)− VxT+1(u) + 1

2

T∑
t=T0

γ2
t ‖f ′(xt)‖2

∗ ≤ Θ + 1
2

T∑
t=T0

γ2
t ‖f ′(xt)‖2

∗[
Θ = maxu,v∈X Vu(v)

] (!)

For MD, relation (!) plays the same crucial role that the inequality∑T

t=T0

γt〈f ′(xt), xt − u〉 ≤
1

2
max
x,y∈X

‖x− y‖2
2 +

1

2

∑T

t=T0

γ2
t ‖f ′(xt)‖2

2

played for SD. Specifically, (!) implies that

εT ≡ mint≤T f(xt)− f∗ ≤
Θ+1

2

∑T

t=T0
γ2
t ‖f ′(xt)‖2

∗∑T

t=T0
γt

6.62

εT ≡ mint≤T f(xt)− f∗ ≤
Θ+1

2

∑T

t=T0
γ2
t ‖f ′(xt)‖2

∗∑T

t=T0
γt

As a result,
♣ [Convergence with “divergent series” stepsizes] Whenever 0 < γt → 0 as t → ∞ in
such a way that

∑
t γt =∞, one has εT → 0 as T →∞

♣ [Optimal stepsize policy] With stepsizes γt =
√

2Θ
‖f ′(xt)‖∗

√
t
, one has

εT ≡ min
t≤T

f(xt)− f∗ ≤ O(1)

√
ΘL‖·‖(f)
√
T

where L‖·‖(f) is the Lipschitz constant of f w.r.t. the norm ‖ · ‖.

6.63

{f∗ = minx∈X f(x), ω(·) : X → R,Θ = maxu,v∈X [ω(u)− ω(v)− 〈∇ω(v), u− v〉]}
⇒ xt+1 = argminy∈X [〈γtf ′(xt), y〉+ Vxt(y)] , γt =

√
Θ

‖f ′(xt)‖∗
√
t

⇒ mint≤T f(xt)− f∗ ≤ O(1)
√

ΘL‖·‖(f)√
T

♠ To get the usual SD, one uses
♣ Ball setup ω(u) = 1

2
‖u‖2

2, ‖ · ‖ = ‖ · ‖2 [X ⊂ {x : ‖x‖2 ≤ R} ⇒ Θ ≤ 1
2
R2]

♠ There are several other important setups:
♣ Simplex setup: ‖ · ‖ = ‖ · ‖1, X ⊂∆n = {x ∈ Rn : x ≥ 0,

∑
i xi ≤ 1}

ω(x) = (1 + δ)
∑

i(xi + δ/n) ln(xi + δ/n), δ = 10−16

resulting in

Θ ≤ O(1) ln(n+ 1)

6.64

♣ `1/`2 setup: X ⊂ Rk1 ×Rk2 × ...×Rkn,

ω([x1; ...;xn]) = O(1)
[∑n

i=1 ‖xi‖
πn
2

]2/πn , πn = 1 + 1
n

‖[x1; ...;xn]‖ =
∑

i ‖xi‖2

resulting in
X ⊂ {x : ‖x‖ ≤ R} ⇒ Θ ≤ O(1) ln(n+ 1)R2

Note:
•When ki = 1 for all i, ‖ · ‖ becomes ‖ · ‖1 and ω(x) becomes strongly convex with
modulus 1, w.r.t. ‖ · ‖1, on the entire Rn.
•When n = 1, ‖ · ‖ becomes ‖ · ‖2, and ω(u) becomes 1

2
‖u‖2

2

♣ Nuclear norm setup: X ⊂ Rp×q,

ω(x) = O(1)
[∑n

i=1 σ
πn
i (x)

]2/πn[
n = min[p, q], πn = 1 + 1

n
, σi(x) : singular values of x

]
‖x‖ = ‖x‖nuc :=

∑
i σi(x)

resulting in
X ⊂ {x : ‖x‖ ≤ R} ⇒ Θ ≤ O(1) ln(n+ 1)R2

6.65

Justifying Simplex setup: It is easily seen that ω is strongly convex, modulus 1, w.r.t.
‖ · ‖, iff

〈∇2ω(x)h, h〉 ≥ ‖h‖2 ∀x ∈ X∀h
For x ∈∆n and ω̄(x) =

∑
i(xi + n−1δ) ln(xi + n−1δ), setting x̄i = xi + n−1δ, one has

‖h‖2
1 =

[∑
i |hi|

]2
=
[∑

i(|hi|/
√
x̄i)
√
x̄i
]2 ≤ [∑i h

2
i /x̄i

] [∑
i x̄i
]

≤ (1 + δ)
(∑

i h
2
i /x̄i

)
= (1 + δ)〈h,∇2ω̄(x)h〉,

whence ω(x) := (1 + δ)ω̄(x) is strongly convex, modulus 1 w.r.t. ‖ · ‖1, on ∆n.
Next, for x, y ∈∆n, setting ȳi = yi + δn−1, x̄i = xi + δn−1, we have

ω(y)− ω(x)− 〈∇ω(x), y − x〉 = (1 + δ)
[∑

i ȳi ln ȳi −
∑

i x̄i ln x̄i −
∑

i(1 + ln x̄i)(ȳi − x̄i)
]

= (1 + δ)
[∑

i ȳi ln(ȳi/x̄i) +
∑

i[x̄i − ȳi]
]

≤ (1 + δ)
[∑

i ȳi ln((n+ δ)/δ) + 1
]
≤ O(1) lnn.

6.66

Prehistory of Mirror Descent
• Assume we want to solve solvable convex problem min

x∈Rn
f(x) and have at our disposal

convex function Φ(y) : Rn → R such that
(a) Φ grows at infinity faster than ‖x‖2, so that the function Φ(y) − aTy achieves its
minimum over y ∈ Rn for every a ⇔ the mapping y 7→ ∇Φ(y) parametrizes the entire Rn

(b) ∇Φ(y) is Lipschitz continuous.
Example: Φ(x) = ‖x‖2

p, p ∈ [2,∞).

♠ Consider continuous time process
d

dt
y(t) = −f ′(

x(t)︷ ︸︸ ︷
∇Φ(y(t)))

Note: With x∗ ∈ Argmin f , setting Φ∗(y) = Φ(y)− xT∗ y, we have

d

dt
Φ∗(y(t)) = [∇Φ(y(t))− x∗]T

d

dt
y(t) = −[f ′(x(t))]T [x(t)− x∗] ≤ − [f(x(t))− f(x∗)]︸ ︷︷ ︸

ε(t) ≥ 0

(!)

Note: Φ∗(y) ≥ Φ∗(y∗) with y∗ given by ∇Φ(y∗) = x∗.
♠ Integrating (!), we get∫ T

0
ε(t)dt ≤ Φ∗(y(0))−Φ∗(y(T)) ≤ Φ∗(y(0))−Φ∗(y∗).

6.67

d
dt
y(t) = −f ′(∇Φ(y(t))︸ ︷︷ ︸

x(t)

) (∗)∫ T
0 ε(t)dt ≤ Φ∗(y(0))−Φ∗(y∗) (!!)

♠ Lipschitz continuity of ∇Φ implies that the discretization

yi+1 = yi − γif ′(∇Φ(yi)︸ ︷︷ ︸
xi

)

of continuous time process (∗) ensures the discrete time version

∑T

i=1
γi[f(xi)− f(x∗)] ≤ Φ∗(y0)−Φ∗(y∗) + C

T∑
i=1

γ2
i

of (!!), and this is, essentially, what we operated with to justify convergence of MD.

6.68

f∗ = min
x∈X

f(x) (P)

♣ Let us compare the convergence properties of MD with Simplex setup and SD (i.e.,
MD with Ball setup).
• Observe that in order to apply MD with Simplex setup, X should be a subset of the
standard simplex. We can ensure this requirement by scaling and translating the original
feasible domain. As a result, MD with Simplex setup becomes applicable to an arbitrary
convex problem (P) with compact feasible domain X, and the efficiency estimate for
the method becomes

εT [Simplex
setup] = min

t≤T
f(xt)− f∗ ≤ Esimplex(T) := O(1) ln1/2(n)

Var‖·‖1,X(f)︷ ︸︸ ︷
max
x,y∈X

‖x− y‖1L‖·‖1
(f) /

√
T

(S)
while for SD the efficiency estimate is

εT [Ball
setup] = min

t≤T
f(xt)− f∗ ≤ Eball(T) := O(1)

Var‖·‖2,X(f)︷ ︸︸ ︷
max
x,y∈X

‖x− y‖2L‖·‖2
(f) /

√
T (B)

The ratio of the right hand side bounds in the estimates is

Esimplex(T)

Eball(T)
= O(

√
lnn) ·

[
maxx,y∈X ‖x− y‖1

maxx,y∈X ‖x− y‖2

]
︸ ︷︷ ︸

A

·
[
L‖·‖1

(f)

L‖·‖2
(f)

]
︸ ︷︷ ︸

B

6.69

Esimplex(T)

Eball(T)
= O(

√
lnn) ·

[
maxx,y∈X ‖x− y‖1

maxx,y∈X ‖x− y‖2

]
︸ ︷︷ ︸

A

·
[
L‖·‖1

(f)

L‖·‖2
(f)

]
︸ ︷︷ ︸

B

• Small (large) ratio
Esimplex(T)

Eball(T)
means that as far as theoretical accuracy guarantees are

concerned, Simplex setup is much better (worse) than Ball setup.

• The factor O(
√

lnn) is “against” Simplex setup; however, in practice this factor is just
a moderate absolute constant.
• Note that ‖u‖1

‖u‖2
is always ≥ 1 and, depending on x, can be as large as

√
n. Therefore

— factor A is always ≥ 1 (i.e., is “against” Simplex setup). Depending on the geometry
of X, it can be as small as 1 and as large as

√
n

— factor B is always ≤ 1 (i.e., is “in favour” of Simplex setup) and can be as small as
1√
n
. The actual value of B is

L‖·‖1(f)
L‖·‖2(f)

= maxx∈X ‖f ′(x)‖∞
maxx∈X ‖f ′(x)‖2

and depends on the “geometry” of f . For example,
— when all first order partial derivatives of f in X are of the same order (“f is nearly
equally sensitive to all variables”), we have

B = O
(
‖(a,...,a)T‖∞
‖(a,...,a)T‖2

)
= O(n−1/2)

— when just O(1) first order derivatives of f on X are of the same order, and the
remaining derivatives are negligible small (“f is sensitive to just O(1) variables”), we
have

B = O
(
‖(a,0,...,0)T‖∞
‖(a,0,...,0)T‖2

)
= O(1)

♣ Conclusion: The performance ratio χ depends on the geometry of X and f .

6.70

χ =
Esimplex(T)

Eball(T)
= O(

√
lnn) ·

[
maxx,y∈X ‖x− y‖1

maxx,y∈X ‖x− y‖2

]
︸ ︷︷ ︸

A

1 ≤ A ≤
√
n

·
[
L‖·‖1

(f)

L‖·‖2
(f)

]
︸ ︷︷ ︸

B

1 ≥ B ≥ 1/
√
n

Extreme example I: X is a ball. In this case, A =
√
n, and since B ≥ 1√

n
, χ ≥ 1 –

method with Ball setup (i.e., the classical SD) outperforms the method with Simplex
setup by factor which varies from O(

√
lnn) (f is nearly equally sensitive to all variables)

to O(
√
n lnn) (f is sensitive to just O(1) variables).

Extreme example II: X is the unit simplex ∆n. In this case, A = O(1), and since
B ≤ 1 and O(

√
lnn) in practice a moderate absolute constant, χ ≤ O(1) – method

with Simplex setup outperforms the classical SD by factor which varies from O
(√

n
lnn

)
(f is nearly equally sensitive to all variables) to O

(√
1

lnn

)
(f is sensitive to just O(1)

variables).
Conclusion: Flexibility in setup allows to adjust MD, to some extent, to the geometry
of the problem to be solved. Let all flowers blossom!

6.71

Application example:
Positron Emission Tomography Image Reconstruction

♣ The Maximum Likelihood estimate of tracer’s density in PET is

λ∗ = argminλ≥0

{∑n
j=1 pjλj −

∑m
i=1 yi ln(

∑n
j=1 pijλj)

}[
yi ≥ 0 are observations, pij ≥ 0, pj =

∑
i pij
]

The KKT optimality conditions read

λj

(
pj −

∑
i

yi
pij∑
` pi`λ`

)
= 0 ∀j,

whence, taking sum over j, ∑
j

pjλj = B ≡
∑
i

yi.

Thus, in fact (PET) is the problem of minimizing over a simplex. Passing to the variables
xj = pjB−1λj, we end up with the problem

minx
{
f(x) = −

∑
i yi ln(

∑
j qijxj) : x ∈∆n

}[
qij = Bpijp

−1
j

] (PET)

6.72

♣ Illustration: “Hot Spheres” phantom (n = 515,871)

Itr 1 2 3 4 5 6 7 8 9 10
f(xt) −4.295 −4.767 −5.079 −5.189 −5.168 −5.230 −5.181 −5.227 −5.189 −5.225

[f∗ ≥ −5.283]

Simplex setup. Progress in accuracy in 10 iterations by factor 21.4

6.73

Simplex setup (left) vs. Ball setup (right) progress in accuracy 21.4 vs. 5.26

6.74

♣ Illustration: Brain clinical data (n = 2,763,635)

Itr 1 2 3 4 5 6 7 8 9 10
f(xt) −1.463 −1.848 −2.001 −2.012 −2.015 −2.015 −2.016 −2.016 −2.016 −2.016

[f∗ ≥ −2.050]
Simplex setup. Progress in accuracy in 10 iterations by factor 17.5

6.75

Mirror-Level Algorithm

♣ Same as SD, the general Mirror Descent admits a version with memory – Mirror Level
(ML) algorithm. The setup for ML is similar to the one of MD and is given by a norm
‖ · ‖ on E and a continuously differentiable and strongly convex, modulus 1 w.r.t. ‖ · ‖,
DGF ω(·) : X → R.
♣ At step t of ML, we
— compute f(xt), f ′(xt) and build the current model of f

ft(x) = maxτ≤t[f(xτ) + 〈f ′(xτ), x− xτ〉]
which underestimates the objective and is exact at the points x1, ..., xt;
— define the best found so far value of the objective f t = minτ≤t f(xτ)
— define the current lower bound ft on f∗ by solving the auxiliary problem

ft = minx∈X ft(x)
The current gap ∆t = f t − ft is an upper bound on the inaccuracy of the best found so
far approximate solution;
— compute the current level `t = ft + λ∆t (λ ∈ (0,1) is a parameter)
— finally, we set

Lt = {x ∈ X : ft(x) ≤ `t},

xt+1 = ProxLt

xt (0) := argmin
x∈Lt

[
〈−∇ω(xt), x〉+ ω(x)

]
and loop to step t+ 1.

6.76

♠ With Ball setup,

ProxLt

xt (0) = argmin
x∈Lt

[
−xTt x+

1

2
xTx

]
= argmin

x∈Lt

1

2
‖x− xt‖2

2.

i.e., the method becomes exactly the BL algorithm.

6.77

Efficiency Estimate for ML

Fact: For every ε, 0 < ε < ∆1, the number N of steps of ML before a gap ≤ ε is
obtained (i.e., before an ε-solution is found) does not exceed the bound

N(ε) =
4ΘL2

‖·‖(f)

λ(1−λ)2(2−λ)ε2 .[
Θ = maxx,y∈X {Vx(y) := ω(y)− ω(x)− 〈y − x,∇ω(x)〉}

]
In particular, for `1/`2 and Nuclear Norm setups one has

N(ε) = O(lnn)

(
maxx,y∈X ‖x− y‖L‖·‖(f)

)2

λ(1− λ)2(2− λ)ε2
.

with ‖ · ‖ and n defined in the descriptions of the setups.

6.78

Claim: For every ε, 0 < ε < ∆1, the number N of steps of ML before a gap ≤ ε is
obtained (i.e., before an ε-solution is found) does not exceed the bound

N(ε) =
4ΘL2

‖·‖(f)

λ(1− λ)2(2− λ)ε2
.

In particular, for `1/`2 and Nuclear Norm setups one has

N(ε) = O(lnn)

(
maxx,y∈X ‖x− y‖L‖·‖(f)

)2

λ(1− λ)2(2− λ)ε2
.

with ‖ · ‖ and n defined in the descriptions of the setups.

♣ Similar to Claim result for BL was derived from the following fact:
Let J = {s, s+ 1, ..., r} be a segment of iterations of BL:

∆r ≥ (1− λ)∆s.

Then the cardinality of J can be upper-bounded as Card(J) ≤ (maxx,y∈X ‖x−y‖2L‖·‖2(f))
2

(1−λ)2∆2
r

.

♠ Similar fact for ML reads:
(!) Let J = {s, s+ 1, ..., r} be a segment of iterations of ML: ∆r ≥ (1− λ)∆s.

Then the cardinality of J can be upper-bounded as Card(J) ≤ 2ΘL2
‖·‖(f)

(1−λ)2∆2
r

.

Claim is derived from (!) in exactly the same fashion as the in the case of BL.

6.79

(!) Let J = {s, s+ 1, ..., r} be a segment of iterations of ML: ∆r ≥ (1− λ)∆s.

Then the cardinality of J can be upper-bounded as Card(J) ≤ 2ΘL2
‖·‖(f)

(1−λ)2∆2
r

.

Proof. Same as in the case of BL, we observe that
• For t running through a segment of iterations J, the level sets Lt = {x ∈ X : ft(x) ≤ `t}
have a point in common, namely, v ∈ Argminx∈X fr(x);

• When t ∈ J, the distances γt = ‖xt − xt+1‖ are not too small: γt ≥ (1−λ)∆r

L‖·‖(f)
.

• As we shall see in a while,

Vxt+1(v) ≤ Vxt(v)− 1
2
γ2
t , t ∈ J[

Vx(y) = ω(y)− [〈y − x,∇ω(x)〉+ ω(x)] ≥ 1
2
‖y − x‖2

] (#)

Thus, while t stays within J, Vxt(v) decrease from step to step by at least 1
2
γ2
t .

Since 0 ≤ Vx(y) ≤ Θ for all x, y ∈ X, (#) combines with the lower bound on γt, t ∈ J, to
imply the desired upper bound on the cardinality of J

6.80

Vxt+1(v) ≤ Vxt(v)−
1

2
‖xt − xt+1‖2, t ∈ J (#)

Proof of (#). Magic Inequality says that whenever x ∈ X, ξ ∈ E and
x+ = argmin

y∈X
[〈ξ −∇ω(x), y〉+ ω(y)] ,

it holds
〈ξ, x+ − u〉 ≤ Vx(u)− Vx+(u)− Vx(x+),

This fact admits modification as follows:
($) Let Y ⊂ X be nonempty convex compact sets in Euclidean space E and ω(·) be a
DGF for X compatible with a norm ‖ · ‖ on E. Given x ∈ X and ξ ∈ E, let

x+ = argmin
y∈Y

[〈ξ −∇ω(x), y〉+ ω(y)]

Then
∀u ∈ Y : 〈ξ, x+ − u〉 ≤ Vx(u)− Vx+(u)− Vx(x+).

Applying ($) to ξ = 0, x = xt, Y = Lt and u = v, we get (#).
Proof of Modification repeats the proof of plain Magic Inequality:

x+ = argminy∈Y [〈ξ −∇ω(x), y〉+ ω(y)]⇒ ∀u ∈ Y : 〈ξ −∇ω(x) +∇ω(x+), u− x+〉 ≥ 0
[optimality conditions]

⇔ ∀u ∈ Y : 〈ξ, x+ − u〉 ≤ 〈∇ω(x+)−∇ω(x), u− x+〉
= [ω(u)− ω(x)− 〈∇ω(x), u− x〉]

−[ω(u)− ω(x+)− 〈∇ω(x+), u− x+〉]
−[ω(x+)− ω(x)− 〈∇ω(x), x+ − x]

= Vx(u)− Vx+(u)− Vx(x+)

NERML – Non-Euclidean Restricted Memory Level algorithm
f∗ = minx∈X f(x)

♣ NERML is a Mirror Descent extension of TPL (Truncated Proximal Level) method,
NERML is a version of ML where bundle size is kept at at most a given level m.

♣ The setup for NERML, same as those for MD and ML, is given by a norm ‖ · ‖ on
the Euclidean space E where X lives and a continuously differentiable strongly convex,
modulus 1 w.r.t. ‖ · ‖, Distance Generating Function ω(·) : X → R.

♣ At every step, NERML calls First Order oracle. In t = 1,2, ... steps, NERML builds
t-th approximate solution xt ∈ X along lower bound ft on the minimum value f∗ of f
on X, so that t-th . gap ∆t = f(xt)− ft upper-bounds inaccuracy of xt in terms of the
objective. The efficiency estimate of NERML is given by the following

Fact: For every ε, 0 < ε < ∆1, the total number of NERML steps before a gap ≤ ε is
obtained (i.e., before an ε-solution is found) does not exceed the bound

N(ε) = O(1)ΘL2
‖·‖(f)ε−2,[

Θ = max
x,y∈X

{Vx(y) = ω(y)− ω(x)− 〈y − x,∇ω(x)〉}
]

6.81

NERML – Construction

♣ Execution of NERML is split into phases. Phase s is associated with
• prox-center cs ∈ X
• s-th upper bound f s on f∗, which is the best value of the objective observed before
the phase begins
• s-th lower bound fs on f∗, which is the best lower bound on f∗ observed before the
phase begins
f s and fs define
♦ s-th optimality gap ∆s = f s − fs
♦ s-th level `s = fs + λ∆s, where λ ∈ (0,1) is parameter of the method,
♦ s-th local DGF ωs(x) = ω(x)− 〈∇ω(cs), x〉 − ω(cs)

• current model f̃ s(·) ≤ f(·) of f(·), which is the maximum of ≤ m affine forms.

♠ To initialize the first phase, we choose c1 ∈ X, compute f(c1), f ′(c1) and set

f̃1(x) = f(c1) + 〈f ′(c1), x− c1〉, f1 = f(c1), f1 = min
x∈X

f̃1(x).

6.82

♣ At the beginning of step t = 1,2, ... of phase s, we have at our disposal
— upper bound f s,t−1 ≤ f s on f∗, which is the best found so far value of the objective,
— lower bound fs,t−1 ≥ fs on f∗,

— model f̃ s,t−1(·) ≤ f(·) of the objective which is the maximum of ≤ m affine forms
— iterate xt ∈ X and set

Ht−1 = {x : 〈αt−1, x〉 ≥ βt−1}
such that

x ∈ X, f(x) ≤ `s ⇒ x ∈ Ht−1 (at)
xt = argminx {ωs(x) : x ∈ Ht−1 ∩X} (bt)

♠ To initialize the first step of phase s, we set

f s,0 = f s, fs,0 = fs, f̃
s,0(·) = f̃ s(·), α0 = 0, β0 = 0 [⇒ H0 = E]

thus ensuring (a1), and set x1 = cs, thus ensuring (b1).

6.83

♠ Step t phase s: Given
• bounds f s,t−1 ≥ f∗, fs,t−1 ≤ f∗ • model f̃ s,t−1(·) ≤ f(·),
• xt and Ht−1 = {x : 〈αt−1, x〉 ≥ βt−1} such that

x ∈ X, f(x) ≤ `s ⇒ x ∈ Ht−1 (at) & xt = argminx {ωs(x) : x ∈ Ht−1 ∩X} (bt)

1. we compute f(xt), f ′(xt) and set
gt(x) = f(xt) + 〈f ′(xt), x− xt〉;

2. we define f̃ s,t(·) as the maximum of gt(·) and affine forms associated with f̃ s,t−1

(dropping, if necessary, one of the latter forms to make f̃ s,t the maximum of at most m
forms). If f(xt) ≤ `s + 0.5(f s − `s) (“progress in upper bound”), we terminate phase s
and set

f s+1 = f s,t, fs+1 = fs,t−1, f̃ s+1(·) = f̃ s,t(·),
otherwise
3. we compute ft = minx

{
f̃ s,t(x) : x ∈ Ht−1 ∩X

}
. Since f(x) ≥ `s in X\Ht−1, we have

f∗ ≥ min[`s, ft], so that
fs,t ≡ max {fs,t−1,min[`s, ft]} ≤ f∗.

If fs,t ≥ `s − 0.5(`s − fs) (“progress in lower bound”), we terminate phase s and set

f s+1 = f s,t, fs+1 = fs,t, f̃ s+1(·) = f̃ s,t(·)
otherwise we set

xt+1 = argminx
{
ωs(x) : x ∈ X ∩Ht−1, f̃ s,t(x) ≤ `s

}
Ht = {x : 〈∇ωs(xt+1), x− xt+1〉 ≥ 0}

and loop to step t+ 1 of phase s.

6.84

Step of NERML

6.85

xt+1 = argminx
{
ωs(x) : x ∈ X ∩Ht−1, f̃ s,t(x) ≤ `s

}
(1)

Ht = {x : 〈∇ωs(xt+1), x− xt+1〉 ≥ 0} (2)

Note: When passing to step t+ 1, it is ensured that

x ∈ X, f(x) ≤ `s ⇒ x ∈ Ht (at+1)

xt+1 = argminx
{
ωs(x) : x ∈ X ∩Ht, f̃ s,t(x) ≤ `

}
(bt+1)

Indeed, xt+1 is the minimizer of ωs(x) on the set

Yt = X ∩Ht−1 ∩ {x : f̃ t,s(x) ≤ `s}
whence

〈∇ωs(x), x− xt+1〉 ≥ 0 ∀x ∈ Yt
⇒ Yt ⊂ Ht = {x : 〈∇ωs(xt+1), x− xt+1〉 ≥ 0} (∗)

Thus,

(x ∈ X, f(x) ≤ `s) ⇒︸︷︷︸
(at)

(x ∈ X ∩Ht−1, f(x) ≤ `s)⇒ (x ∈ X ∩Ht−1, f̃ s,t(x) ≤ `s) ⇒︸︷︷︸
(∗)

x ∈ Ht

as required in (at+1). (bt+1) readily follows from the definition of Ht. �

6.86

Convergence of NERML

♣ The efficiency estimate for TLM was a nearly straightforward consequence of the
following fact:

(*) The number of steps of TLM at a phase s does not exceed

Ns =
4
(
maxx,y ‖x− y‖2L‖·‖2

(f)
)2

(1− λ)2∆2
s

+ 1.

♣ For NERML, a similar fact is valid:
(!) The number of steps of NERML at a phase s does not exceed

Ns =
8ΘL2

‖·‖(f)

(1− λ)2∆2
s

+ 1.

♠ The same reasoning as in the case of TLM, with (!) playing the role of (*), yields
Corollary: For every ε, 0 < ε < ∆1, the total number of NERML steps before a gap ≤ ε
is obtained (i.e., before an ε-solution is found) does not exceed the bound

N(ε) = c(λ)ΘL2
‖·‖(f)ε−2.

6.87

Claim:
(!) The number of steps of NERML at a phase s does not exceed Ns =

8ΘL2
‖·‖(f)

(1−λ)2∆2
s

+ 1.

Proof. Let phase s not be terminated in course of N steps. By construction, for
1 ≤ t ≤ N we have

xt+1 ∈ Ht−1 ∩X & xt = argminx {ωs(x) : x ∈ Ht−1 ∩X}
⇒ ωs(xt+1) ≥ ωs(xt) + 〈∇ω(xt), xt+1 − xt〉︸ ︷︷ ︸

≥0

+1
2
‖xt+1 − xt‖2 ≥ ωs(xt) + 1

2
‖xt+1 − xt‖2 (1)

Further, when passing from xt to xt+1 = argminx
{
ωs(x) : x ∈ Ht−1 ∩X, f̃ s,t(x) ≤ `s

}
, the

function gt(x) ≡ f(xt) + 〈f ′(xt), x− xt〉 ≤ f̃ s,t varies from the value f(xt) ≥ f s,t to a value
≤ `s and thus decreases by at least 0.5(1−λ)∆s (otherwise phase s would be terminated
at step t due to progress in upper bound). Since gt(·) is Lipschitz continuous, with
constant L‖·‖(f) w.r.t. ‖ · ‖, we conclude that

0.5(1− λ)∆s ≤ ‖xt − xt+1‖L‖·‖(f)⇒ ‖xt − xt+1‖ ≥
0.5(1− λ)∆s

L‖·‖(f)
.

Applying (1), we arrive at

ωs(xt+1) ≥ ωs(xt) +
(1− λ)2

8L2
‖·‖(f)

∆2
s , 1 ≤ t ≤ N. (2)

Since the function ωs(x) = ω(x)−〈∇ω(cs), x−cS〉+ω(cs) maps X into [0,Θ], (2) implies
(!). �

6.88

Implementation issues

♣ How to solve auxiliary problems? At a step of NERML, one should solve the auxiliary
problems

ft = minx
{
f̃ s,t(x) : x ∈ Ht−1 ∩X

}
(L)

xt+1 = argminx
{
ωs(x) : x ∈ Ht−1 ∩X, f̃ s,t(x) ≤ `s

}
(N)

Formally, both (L) and (N) are problems of the same dimension as the problem of
interest.
Question: Does it make sense to reduce the large-scale problem of interest to a series
of equally large-scale auxiliary problems?
Answer: Yes, it does – (L), (N) can be easily reduced to a low-dimensional black-box-
represented convex programs.

6.89

min
x

{
f̃ s,t(x) : x ∈ Ht−1 ∩X

}
(L)

♣ Assume that X is a simple polytope. Then (L) is an LP program and can be solved
as such, unless the dimension of X is really large. In the latter case, we can solve (L)
via Lagrange Duality. Indeed, the objective in (L) is the maximum of (at most) m affine
functions hi(x), i = 1, ...,m, while Ht−1 is given by a single linear inequality h0(x) ≤ 0.
Thus, (L) is the problem

ft = minx∈X {max1≤i≤m hi(x) : h0(x) ≤ 0}
= maxλ

{
F (λ) = minx∈X[

∑m
i=0 λihi(x)] : λ ≥ 0,

∑m
i=1 λi = 1

}
.

• In order to compute F (λ) and F ′(λ) at a given λ, it suffices to minimize over X the
linear function hλ(x) =

∑m
i=0 λihi(x). after a minimizer xλ of hλ(·) over X is found, one

sets

F (λ) = hλ(xλ); F ′(λ) = (h1(xλ), ..., hm(xλ))T . (∗)

♣ Assuming problems minx∈X [〈ξ, x〉+ ω(x)] easily solvable, problem of minimizing linear
objective over X is easily solvable as well. ⇒ it is easy to implement the First Order
oracle for F
Thus, we can find ft by solving the black-box-represented convex program

max
λ

{
F (λ) : λ ≥ 0,

m∑
i=1

λi = 1

}
with dimension m+ 1 (which is under our full control!) by, say, the Ellipsoid method.

6.90

♣ The second auxiliary problem

xt+1 = argminx
{
ωs(x) : x ∈ X ∩Ht−1, f̃ s,t ≤ `s

}
= argminx∈X

{
ω(x) + 〈ξs, x〉 : h̃i(x) ≤ 0, i = 1, ...,m+ 1

}
also can be reduced to m+ 1-dimensional black-box-represented convex program

max
λ≥0

Φ(λ), Φ(λ) = min
x∈X

[
ω(x) + 〈ξs, x〉+

∑m+1

i=1
λihi(x)

]
with First Order oracle readily given by the possibility to solve auxiliary problems

xλ = argmin
x∈X

[
ω(x) + 〈ξs, x〉+

∑m+1

i=1
λihi(x)

]
.

After λ∗ ∈ Argminλ≥0 Φ(λ) is found by, e.g., the Ellipsoid method, we recover xt+1 as xλ∗.
Note: ω(·) is strongly convex, so that high-accuracy approximate solution to maxλ≥0 Φ(λ)
results in high accuracy approximation to xt+1.
⇒With the outlined approach MD/ML/NERML become implementable under the only
assumption that one can easily solve problems minX[〈ξ, x〉+ ω(x)]. This indeed is so for
• Ball setup and simple X (ball, box, positive part of ball, standard simplex,...),
• Simplex setup and simple X (the entire simplex ∆n, intersection of ∆n and a box,...),
• Spectahedron setup with X comprised of block-diagonal matrices with diagonal blocks
of size O(1).
In all these cases, (∗) can be solved in ≤ O(n lnn) a.o.

6.91

How It Works: PET Image Reconstruction via NERML

min
x

{
f(x) = −

∑m

i=1
yi ln

(∑n

j=1
qijxj

)
: x ∈∆n

}
(PET′)

♣ We have simulated 2D PET scanner with a single ring of detectors:

Ring with 360 detectors, field of view and a LOR (ring’s radius 1, field of view’s radius 0.9)

and field of view partitioned into pixels by 128× 128 regular grid. With this setup,
— the design dimension of the problem is n = 10,471;
— the number of log-terms in the objective is 39,784
— the number of nonzero qij is 3,746,832 (the density of the matrix [qij] is 0.009).
♣ The algorithm: plain NERML with Simplex setup, m = 1 and λ = 0.95.

6.92

♣ Experiment 1: noiseless measurements (brighter pixels correspond to higher tracer’s
density):

True image: 10 “hot spots”
f = f∗ = 2.817

x1 = n−1(1, ...,1)T

f = 3.247
x2 – some traces of 8 spots

f = 3.185

x3 – traces of 8 spots
f = 3.126

x5 – some trace of 9-th spot
f = 3.016

x8 – 10-th spot still missing...
f = 2.869

x24 – trace of 10-th spot
f = 2.828

x27 – all 10 spots in place
f = 2.823

x31 – that is it...
f = 2.818

6.93

0 20 40 60 80 100 120
10

−4

10
−3

10
−2

10
−1

10
0

Progress in accuracy, noiseless measurements.
solid line: Relative gap Gap(t)

Gap(1)
vs. step number t; Gap(t) is the difference between the best found

so far value f(xt) of f and the current lower bound on f∗.
• In 111 steps, the gap was reduced by factor > 1600

dashed line: Progress in accuracy f(xt)−f∗
f(x1)−f∗ vs. step number t

• In 111 steps, the accuracy was improved by factor > 1080

• 111 steps of the NERML algorithm took 18′51′′ on a 350 MHz Pentium II laptop with
96 MB RAM.

6.94

♣ Experiment 2: noisy measurements (at average, 40 LOR’s per bright pixel, 63,092
LOR’s totally):

True image: 10 “hot spots”
f = −0.883

x1 = n−1(1, ...,1)T

f = −0.452
x2 – light traces of 5 spots

f = −0.520

x3 – traces of 8 spots
f = −0.585

x5 – 8 spots in place
f = −0.707

x8 – 10th spot still missing...
f = −0.865

x12 – all 10 spots in place
f = −0.872

x35 – all 10 spots in place
f = −0.886

x43 ...
f = −0.896

6.95

0 20 40 60 80 100 120
10

−4

10
−3

10
−2

10
−1

10
0

Progress in accuracy, noisy measurements.
solid line: Relative gap Gap(t)

Gap(1)
vs. step number t

• In 115 steps, the gap was reduced by factor 1580
dashed line: Progress in accuracy f(xt)−f

f(x1)−f vs. step number t (f is the last lower bound on f∗ built
in the run)
• In 115 steps, the accuracy was improved by factor > 460

6.96

Mirror Descent Stochastic Approximation

♣ Consider the case when solving a convex program

f∗ = min
x∈X

f(x)

[• X ⊂ Rn: convex compact • f : X → R convex and Lipschitz]

no precise first order information is available. Specifically, we have at our disposal

• Proximal setup for X – norm ‖ · ‖ and DGF ω(·)
• Stochastic Oracle (SO) for f as follows: at t-th call to the oracle, xt being the input,
the oracle returns

g(xt, ξt) ∈ R, G(xt, ξt) ∈ Rn

as random estimates of f(xt) and f ′(xt), where ξ1, ξ2, ... is a sequence of independent
realizations of a random variable ξ (”oracle’s noise”).
♠ We assume that the SO is unbiased:

E{g(x, ξ)} = f(x), E{G(x, ξ)} ∈ ∂f(x).

In addition, we assume that

E{‖G(x, ξ)‖2
∗} ≤ L2 <∞ ∀x ∈ X

6.97

Example: Our f is given as expectation:

f(x) =

∫
Ξ
F (x, ξ)dP (ξ),

where F is convex in x and efficiently computable.
When we cannot compute the expectation in a closed analytic form, but can instead
sample from the distribution P , we, under mild regularity assumptions on F , have at our
disposal unbiased Stochastic Oracle

g(x, ξ) = F (x, ξ), G(x, ξ) = F ′x(x, ξ)

6.98

f∗ = min
x∈X

f(x)

E{g(x, ξ)} = f(x),E{G(x, ξ)} ∈ ∂f(x),E{‖G(x, ξ)‖2
∗} ≤ L2 <∞ ∀x ∈ X

Proxx(ξ) = argminu∈X

[
〈ξ, u〉+ ω(u)− ω(x)− 〈u− x,∇ω(x)〉︸ ︷︷ ︸

Vx(u)

]

♣ We can solve the problem with Mirror Descent Stochastic Approximation which is
completely similar to MD:

x1 ∈ X;xt+1 = Proxxt(γtG(xt, ξt)),1 ≤ t ≤ N ;

xN = 1
γ1+...+γN

∑N
t=1 γtxt.

Here γt > 0 are deterministic stepsizes, and ‖ · ‖ and the function ω underlying the
prox-mapping are given by Proximal setup.

6.99

x1 ∈ X;xt+1 = Proxxt(γtG(xt, ξt)),1 ≤ t ≤ N ;

xN = 1
γ1+...+γN

∑N
t=1 γtxt.

Fact: For the MD Stochastic Approximation one has

E{f(xN)− f(x∗)} ≤ [
∑N

t=1γt]
−1E{

∑N
t=1γt[f(xt)− f∗]} ≤

Θ + 1
2

∑N
t=1γ

2
t L

2∑N
t=1γt

,

Θ = max
x,y∈X

Vx(y)

that is, we get exactly the same efficiency estimate as in the case of precise First Order
oracle, but now – for the expected inaccuracy of the approximate solution xN – the
weighted sum of the search points we have generated in course of N = 1,2, ... steps.

• Remark: Euclidean version

xt+1 = argmin
u∈X

‖[xt − γtG(xt, ξt)]− u‖2
2

of Mirror Descent Stochastic Approximation is called Stochastic Subgradient Descent
and is extremely popular in today Machine Learning.

6.100

x1 ∈ X;xt+1 = Proxxt(γtG(xt, ξt)),1 ≤ t ≤ N ;xN = 1
γ1+...+γN

∑N
t=1 γtxt.

Convergence Analysis of Mirror Descent Stochastic Approximation
♠ Let us carry out convergence analysis of the algorithm. Denoting by x∗ a minimizer
of f over X, we, as always, have∑N

t=1
γt〈G(xt, ξt), xt − x∗〉 ≤ Θ +

1

2

∑N

t=1
γ2
t ‖G(xt, ξt)‖2

∗

Taking expectations of both sides and taking into account that xt is a deterministic
function of ξ1, ..., ξt−1, while ξ1, ..., ξN are independent, we get∑N

t=1
γtE{〈f ′(xt), xt − x∗〉} ≤ Θ +

1

2

∑N

t=1
γ2
t L

2,

whence also

E{
∑N

t=1
γt[f(xt)− f(x∗)]} ≤ Θ +

1

2

∑N

t=1
γ2
t L

2

6.101

∑N
t=1γtE{f(xt)− f(x∗)} ≤ Θ + 1

2

∑N
t=1γ

2
t L

2 & xN = 1
γ1+...+γN

∑T
t=1 γtxt

By convexity,

E{f(xN)− f(x∗)} ≤ [
∑N

t=1γt]
−1E{

∑N
t=1γt[f(xt)− f(x∗)]} ≤

Θ + 1
2

∑N
t=1γ

2
t L

2∑N
t=1γt

,

as claimed. �

6.102

Online Optimization

• Problem: Assume on time horizon 1,2, ..., T you and nature (or adversary) play game
as follows:
— at time t you are at a point xt ∈ X, where X ⊂ Rn is a once for ever fixed convex
compact set.
— at time t the nature/adversary selects a Lipschitz continuous convex function ft(x) :
X → R and enforces you to pay the random amount

φt(xt, ξt)

where ξt is random variable, and φt, ξt are such that

Eξt {φt(x, ξt)} = ft(x), x ∈ X.
Besides this, the nature reports stochastic subgradient Gt(xt, ξt) of ft at xt:

gt(x) := Eξt {Gt(x, ξt)} ∈ ∂ft(xt).
— you are allowed to use all accumulated so far information to select the next point
xt+1 ∈ X, and then the process continues.
Important: The random variables ξ1, ξ2, ..., ξT are mutually independent.

6.103

• Goal: The performance of your policy for selecting x1, ..., xT is the expectation

Eξ1,...,ξT {φ1(x1, ξ1) + φ2(x2, ξ2) + ...+ φT(xT , ξT)}
of your total payment. In Online Optimization, this performance is compared with
the one of “ideal player” who knows the future – the sequence f1, ..., fT , but not the
realization of noises! – in advance, but cannot move - must ensure that x1 = x2 = ... =
xT . Denoting the common value of xt’s by x, the ideal player will select x by solving the
problem

min
x∈X

Eξ1,...,ξT

{
T∑
t=1

φt(x, ξt)

}
= min

x∈X

{
T∑
t=1

ft(x)

}
.

The difference

Regret = Eξ1,...,ξT

{
T∑
t=1

φt(xt, ξt)

}
−min

x∈X

{
T∑
t=1

ft(x)

}
is called regret; the goal of Online Minimization is to select the policy for updating xt
which makes the regret as small as possible.
Note: The paradigm of Online Minimization is different from the one of usual opti-
mization even when ft ≡ f is independent of t. With the usual approach, an algorithm
is an offline process; it does not matter how nonoptimal are the search points — the
only thing which matters is how nonoptimal is the resulting approximate solution. In
contrast, in Online Optimization with fixed f , we “pay on the fly,” and what matters is
how good at average, in terms of the objective, are the search points.

6.104

♣ Mirror Descent Regret Minimization. Let us fix Proximal setup for X — a norm
‖ · ‖ on the embedding X linear space E, and a DGF ω(x) : X → R which is continuously
differentiable and strongly convex, modulus 1, w.r.t. ‖ · ‖. As always, we set

Θ = max
u,v∈X

[Vv(u) := ω(u)− ω(v)− 〈∇ω(v), u− v〉]

Assumption: Eξt

{
‖Gt(x, ξt)‖2

∗
}
≤ L2 ∀(x ∈ X, t ≤ T).

♠ Consider the recurrence

xt+1 = Proxxt[γGt(xt, ξt)] := argmin
u∈X

[〈γGt(xt, ξt), y〉+ Vxt(y)] , t = 1, ..., T.

with fixed stepsize γ > 0.

Let x∗ ∈ Argminx∈X
∑T

t=1 ft(x). By our standard argument, we have

T∑
t=1

γ〈Gt(xt, ξt), xt − x∗〉 ≤ Θ +
1

2
γ2

T∑
t=1

‖Gt(xt, ξt)‖2
∗ .

Taking expectations and recalling that xt is a deterministic function of ξ1, ..., ξt−1 and
therefore

Eξt{〈Gt(xt, ξt), xt − x∗〉} = 〈f ′t(xt), xt − x∗〉,

we get
∑T

t=1 E {〈f ′t(xt), xt − x∗〉} ≤
Θ
γ

+ γTL2

⇒Regret = E
{∑T

t=1[φt(xt, ξt)− ft(x∗)]
}

= E
{∑T

t=1[ft(xt)− ft(x∗)]
}

≤ E
{∑T

t=1〈f ′t(xt), xt − x∗〉
}
≤

Θ

γ
+
γ

2
TL2

6.105

E

{∑T

t=1
[ft(xt)− ft(x∗)]

}
≤

Θ

γ
+
γ

2
TL2

Setting γ =
√

2Θ
L
√
T

, we get for the policy in question

1

T
Regret ≤

√
2ΘL√
T

Thus, with the MD policy the average regret per step Regret
T

for large T can be made as

small as O(1/
√
T).

Note: In the above construction, the stepsize γ is the same for all t ≤ T and is “tuned”
to the time horizon T we are interested in. With appropriate modification, the stepsize
can be made varying in time in such a way that the average, per unit time, regrets on
time horizons T = 1,2, ... will go to zero as T →∞ at the rate O(1/

√
T).

6.106

Application Example: Prediction for Deterministic Boolean Sequence
[for in-depth treatment, see A. Rakhlin, K. Sridharan, Statistical Learning and Sequential Prediction,
http://www.mit.edu/~rakhlin/courses/stat928/stat928_notes.pdf]

Situation: We observe a deterministic Boolean sequence ξN = (ξ1, ..., ξN), ξt ∈ {0,1} on
time horizon 1, ..., N .
Goal: To build predictions ξ̂t which, given ξt−1 = (ξ1, ...ξt−1), predict (perhaps in ran-
domized fashion) ξt, t = 1, ..., N .
Performance of a collection Ξ = {ξ̂t, t ≤ N}, of predictions is quantified by average over
time expected prediction error

Err[Ξ] = E

{
1

N

N∑
t=1

χ(ξ̂t, ξt)

} [
χ(ξ, ξ′) =

{
0, ξ = ξ′

1, ξ 6= ξ′

]
the expectation being taken over the random “driving factors,” if any, influencing ξ̂t
(these factors are present when the predictions indeed are randomized).

Note: We make no assumptions on the nature of Boolean sequence ξN !!

6.107

Basic Predictor: We allow for ξ̂t to be randomized: the conditional, given what hap-
pened on time horizon 1, ..., t − 1, probability for ξ̂t to take value 1 is xt ∈ [0,1]. Note
that

E|t−1

{
χ(ξ̂t, ξt)

}
= xt[1− ξt] + (1− xt)ξt = ft(xt) := |xt − ξt| (!)

where E|s is the conditional, given realization of driving factors influencing ξ̂1, ..., ξ̂s,
expectation.
• To update xt, we use “online subgradient descent,” – the recurrence

xt+1 = Π∆[xt − γtf ′t(xt)], f ′t(x) =

 −1, x < ξt
0, x = ξt
1, x > ξt

where Π∆(s) =

 0, s < 0
s, 0 ≤ s ≤ 1
1, s > 1

is the metric projection on ∆ = [0,1], x1 ∈ [0,1] is once

for ever fixed, and γt are deterministic positive stepsizes satisfying γ1 ≥ γ2 ≥ ... ≥ γN .

Note: The resulting sequence x1, ..., xN is deterministic! ⇒Err[Ξ] = 1
N

∑N
t=1 ft(xt) by

(!).

6.108

Performance Analysis: Let us fix x̄ ∈ [0,1] and set dt = 1
2
(xt − x̄)2. By the standard

argument, noting that ft(x) is convex, we have

γtf ′t(xt)(xt − x̄) ≤ dt − dt+1 + 1
2
γ2
t

⇒ ft(xt)− ft(x̄) ≤ f ′t(xt)(xt − x̄) ≤ dt−dt+1

γt
+ 1

2
γt

⇒
∑N

t=1[ft(xt)− ft(x̄)] ≤
∑N

t=1
dt−dt+1

γt
+ 1

2

∑N
t=1 γt

= 1
2

∑N
t=1 γt + d1

γ1
+ d2

[
1

γ2
−

1

γ1

]
︸ ︷︷ ︸

≥0

+d3

[
1

γ3
−

1

γ2

]
︸ ︷︷ ︸

≥0

+...+ dN

[
1

γN
−

1

γN−1

]
︸ ︷︷ ︸

≥0

− 1
γN
dN+1

≤ 1
2

∑N
t=1 γt + 1

2

[
1
γ1

+
[

1
γ2
− 1

γ1

]
+
[

1
γ3
− 1

γ2

]
+ ...+

[
1
γN
− 1

γN−1

]]
[since 0 ≤ dt ≤ 1/2]

= 1
2

∑N
t=1 γt + 1

2
1
γN

⇒ Err[Ξ] = 1
N

∑N
t=1 ft(xt) ≤

1
N

∑n
t=1 ft(x̄) + 1

2N

[∑N
t=1 γt + 1

γN

]
• Let us set γt = α√

t
with some α > 0. Then

∑N
t=1 γt ≤ α

∫ N
0 s−1/2ds = 2αN1/2 and

1
γN

= α−1
√
N , and we get Err[Ξ] ≤ 1

N

∑n
t=1 ft(x̄) + 1

2

[
2α+ 1

α

]
N−1/2, which with α = 1/

√
2

yields

Err[Ξ] ≤
1

N

N∑
t=1

|x̄− ξt|+
√

2/N. (#)

6.109

Err[Ξ] ≤
1

N

n∑
t=1

|x̄− ξt|︸ ︷︷ ︸
E(x̄)

+
√

2/N. (#)

♠ Now let λ be the fraction of ones in ξN . Note that E(1) = 1 − λ and E(0) = λ, so
that (#) (which holds true for every x̄ ∈ [0,1]) implies that

Err[Ξ] ≤ min[λ,1− λ] +
√

2/N. (!)

Conclusions: • When N is large, upper bound (!) on average, over time horizon 1, ..., N ,
expected prediction error is close to min[λ,1− λ]. The latter quantity always is ≤ 1/2.
• Bound 1/2 is not interesting: we can arrive at Err[Ξ] = 1/2 when “predicting” by
flipping a perfect coin, not using observations at all.
• However: In the “asymmetric case” min[λ,1 − λ] < 1/2, we get a nontrivial upper
bound on the average expected prediction error – and this is with no assumptions on
ξN except for asymmetry!
♠ Fact: When all we know about ξN is that the fraction of ones in the sequence is
a given λ, then, for every ε > 0, no prediction can guarantee average expected error
≤ min[λ,1− λ]− ε, provided that N is large enough!

6.110

Modification

♠ The accuracy guaranties we have obtained so far, as applied to the sequence
0,1,0,1,0,1,0,1, ... results in trivial bound 1/2, in spite of the fact that were we sure
that the presented fragment is “representative” for the entire sequence, every normal
person would predict without errors at all.
Question: How to modify the approach to predict well sequences like 0,1,0,1,0,1, ... ?

Model: There exist m “states” 0,1, ...,m − 1. We observe, one entry at a time, a se-
quence ζ0, ζ1, ζ2, ..., ζN , with ζt ∈ S = {0,1, ...,m−1}, and we know in advance that for ev-
ery state υ, there are exactly two known to us states p0(υ) and p1(υ), with p0(υ) 6= p1(υ),
such that if ζt = υ, then ζt+1 ∈ {p0(υ), p1(υ)}.
Goal: for t ≥ 1, to predict ζt given ζ0, ζ1, ..., ζt−1.

Illustration: A Boolean sequence ξN can be treated as follows: take m = 2κ for κ ≥ 0
and say that at time t ≥ κ the sequence is in state υ, if the bits ξt−κ+1, ξt−κ+2, ..., ξt form
the binary representation of υ. This definition of states says loud and clear what are
p0(υ) and p1(υ); e.g., with κ = 3,

p0(5 = 101) = 010 = 2, p1(5 = 101) = 011 = 3[
for ιs ∈ {0,1}, 0 ≤ s < κ, ι0...ικ−1 = 2κ−1ι0 + 2κ−2ι1 + ...+ 2ικ−2 + ικ−1

]
Example: the sequence 0,1,0,1,0,1, when considered with κ = 2 alternates between
the states υ = 1 = 01 and υ = 2 = 10 from the set S = {0,1,2,3}.
Note: in our original treatment of Boolean sequence ξN , we used κ = 0

6.111

Modified Predictor we are about to design for the model just outlined is our Basic
Predictor used separately for every one of the states. Specifically:
• We introduce “counters of visits” of states – the quantities τ(t, υ) = Card{τ ≤ t : ζτ =
υ}, υ ∈ S, and denote by t(υ, τ) the instant t when the sequence ζN for τ-th time visits
state υ
• The prediction ζ̂t, t ≥ 1, is made when we are at state ζt−1 and is selected at random
in {p0(ζt−1), p1(ζt−1)}, with conditional, by what happened prior to time t, probability of
the second choice equal to xζt−1,τ(t−1,ζt−1), with xυ,τ given by the recurrence
— xυ,1 ∈ [0,1] are once for ever fixed
— xυ,τ+1 = Π[0,1][xυ,τ − γτf ′υ,τ(xυ,τ)], where

fυ,τ(x) = |x− δυ,τ |, δυ,τ =

{
0, ζt(υ,τ)+1 = p0(υ)
1, ζt(υ,τ)+1 = p1(υ)

, γτ =
1√
2τ
,

and f ′ stands for a subgradient of f .

In other words,
— we associate with states υ Boolean sequences ξ1υ, ξ2υ, ξ3υ, ... with ξτυ being 0 or 1
depending on whether ζN at τ-th visit to state υ moved from this state to p0(υ) or to
p1(υ);
— when predicting ζt at state υ = ζt−1 visited for τ-th time, the prediction is p0(υ) or
p1(υ) depending on what, according to Basic Predictor as applied to the observed so
far part ξ1υ, ξ2υ, ..., ξτυ of the Boolean sequence associated with the state υ, is the next
term, ξ(τ+1),υ, in this sequence.

6.112

Illustration: Assume we observe a Boolean sequence ξ0, ξ1, ξ2... and select κ = 2, re-
sulting in four states:

00 = 0,01 = 1,10 = 2,11 = 3

of the induces ζ-sequence, and in

υ p0(υ) p1(υ)

0 0 1
...00→ ...000 ...00→ ...001

1 2 3
...01→ ...010 ...01→ ...011

2 0 1
...10→ ...100 ...10→ ...101

3 2 3
...11→ ...110 ...11→ ...111

where, say, the last row says that when the current state of ζ-sequence is 3 = 11, the
next state can be either 2 = 10, or 3 = 11, depending on whether the corresponding
fragment in ξ-sequence is 110 or 111.

6.113

υ p0(υ) p1(υ)

0 0 1
1 2 3
2 0 1
3 2 3

♠ This is how we predict Boolean ξ-sequence

ξ0ξ1ξ2ξ3ξ4ξ5ξ6... = 0100110...

which gives rise to ζ-sequence

ζ0, ζ1, ζ2, ζ3, ζ4, ζ5, ... = 1,2,0,1,3,2, ... = 01,10,00,01,11,10, ...

• First, we predict ξ2 being at state ζ0 = 1 (first visit) ⇒probability to predict 1
is x1,1 (parameter of construction ∈ [0,1]). We have ζ1 = 2 = p0(ζ0) ⇒ δ1,1 = 0
⇒x1,2 = Π[0,1][x1,1 − γ1sign[x1,1 − δ1,1]] = Π[0,1][x1,1 − γ1]
• Next, we predict ξ3 being at state ζ1 = 2 (first visit) ⇒probability to predict 1
is x2,1 (parameter of construction ∈ [0,1]). We have ζ2 = 0 = p0(ζ1) ⇒ δ2,1 = 0
⇒x2,2 = Π[0,1][x2,1 − γ1sign[x2,1 − δ2,1]] = Π[0,1][x2,1 − γ1]
• Next, we predict ξ4 being at state ζ2 = 0 (first visit) ⇒probability to predict 1
is x0,1 (parameter of construction ∈ [0,1]). We have ζ3 = 1 = p1(ζ2) ⇒ δ0,1 = 1
⇒x0,2 = Π[0,1][x0,1 − γ1sign[x0,1 − δ0,1]] = Π[0,1][x0,1 + γ1]
• Next, we predict ξ5 being at state ζ3 = 1 (second visit) ⇒probability to predict
1 is x1,2 (has already been built). We have ζ4 = 3 = p1(ζ3) ⇒ δ1,2 = 1 ⇒x1,3 =
Π[0,1][x1,2 − γ2sign[x1,2 − δ1,2]] = Π[0,1][x1,2 + γ2]
..

6.114

♠ Performance Analysis. Given ζN , let Nυ = {t,1 ≤ t ≤ N : ζt−1 = υ}, Nυ = Card(Nυ).
Note: {Nυ : υ ∈ S} is partition of {1,2, ..., N} into non-overlapping subsets.
• For υ ∈ Υ = {υ : Nυ 6= ∅}, let ξυτ , 1 ≤ τ ≤ Nυ, be the Boolean sequence with τ-th
entry equal to 0 or 1 depending on whether the τ-th visit to state υ (this visit happens
at time t(υ, τ)) results in transition to the state p0(υ) (i.e., ζt(υ,τ)+1 = p0(υ)) or to the
state p1(υ) (i.e., ζt(υ,τ)+1 = p1(υ)).

Observation: By construction, the just described Modified Predictor is our Basic Pre-
dictor run separately on every Boolean sequence {ξυτ }

Nυ

τ=1, υ ∈ Υ

⇒The expected value of the ratio # of wrong predictions on time horizon 1,2, ..., N
N

is upper-
bounded by

Err :=
1

N

∑
υ∈Υ

[
Nυ min [λυ,1− λυ] +

√
2Nυ

]
,

where

λυ =
Card{t ∈ {1, ..., N} : ζt−1 = υ, ζt = p1(υ)}

Card{t ∈ {1, ..., N} : ζt−1 = υ}
=

Card{t ∈ {1, ..., N} : ζt−1 = υ, ζt = p1(υ)}
Nυ

6.115

Back to Predicting Boolean Sequence

♠ Assume we want to predict terms ξt of Boolean sequence ξN = (ξ1, ..., ξN) on time
horizon {1, ..., N}.
Goal: To compare the performance guarantees given by Basic and Modified Predictors
when the latter is applied to the sequence of states {ζt = ξt−κ+1...ξt}
Note: To make the comparison possible, we assume that ξN is augmented from the
left by Boolean entries ξ1−κ, ξ2−κ, ..., ξ0, thus making well defined the states for times
t ∈ {0,1, ..., N}, as required for Modified Predictor.
• For Basic Predictor, the performance guarantee on time horizon 1,2, ..., N is

Err ≤ ErrI := φ(λ) +
√

2/N[
φ(λ) = min[λ,1− λ], λ = Card{t,1≤t≤N :ξt=1}

N

] (I)

• For Modified Predictor, the performance guarantee on time horizon 1,2, ..., N is

Err ≤ ErrE := 1
N

∑
υ∈Υ

[
Nνφ(λυ) +

√
2Nν

]
[Nν = Card{t,1 ≤ t ≤ N : ξt−κ...ξt−1 = υ}, λυ = Card{t,1 ≤ t ≤ N : ξt−κ...ξt−1 = υ, ξt = 1}/Nυ]

(E)

Note:
• N =

∑
υ∈ΥNυ, λ = 1

N

∑
υ∈ΥNυλυ, φ is concave

⇒The leading term 1
N

∑
υ∈ΥNνφ(λυ) in (E) is ≤ the leading term φ(λ) in (I)

• The extra term
√

2/N in (I) is ≥ the extra term 1
N

∑
υ∈Υ

√
2Nυ in (E). However, the

latter term is ≤
√

2κ
√

2/N , and both these terms are small when N is large
⇒We can expect that for κ fixed and N large, Modified Predictor is better than Basic
one.
Note: Similar argument shows that for large N , one can expect Modified Predictor to
be the better the larger is κ.

6.116

How It Works

♠ Empirical expected average, over time horizon 1, ..., N = 1024, prediction error (data
over 1000 simulations):

ξN κ = 0 κ = 1 κ = 2 κ = 3 κ = 4 κ = 5
RAND 0.499/0.499 0.487/0.484 0.496/0.564 0.513/0.596 0.499/0.627 0.513/0.691
QR[e] 0.518/0.542 0.463/0.499 0.141/0.215 0.143/0.232 0.145/0.247 0.148/0.263
QR[π] 0.515/0.540 0.301/0.346 0.306/0.369 0.170/0.259 0.143/0.256 0.145/0.270

QR[
√

2] 0.518/0.543 0.184/0.235 0.187/0.255 0.190/0.275 0.194/0.294 0.166/0.281

Numbers in cells: empirical average prediction error and its theoretical upper bound
κ: parameter of Modified Predictor [κ = 0 corresponds to Basic Predictor]

Generation of ξN :
• RAND: MATLAB pseudo-random generator: to get ξt, you generate vt =rand(1,1) and
set ξt = 0 or ξt = 1 depending on whether or not vt < 0.5
• QR[α]: we generate sequence vt = tα− floor(tα) and set ξt to 0 or to 1 depending on
whether or not vt < 1/2.

6.117

Mirror Descent
for

Convex-Concave Saddle Point Problems

♣ Convex-Concave Saddle Point problem is

SV = min
x∈X

max
y∈Y

φ(x, y) (SP)

where:
• X ⊂ Ex, Y ⊂ Ey are nonempty closed and bounded convex sets in Euclidean spaces
Ex, Ey
• φ(x, y) : Z := X × Y → R is the cost function which is Lipschitz continuous, convex in
x ∈ X and concave in y ∈ Y .
♣ Solutions to (SP) are, by definition, saddle points of φ on X × Y , that is, points
(x∗, y∗) ∈ X × Y where φ achieves its minimum in x ∈ X and its maximum in y ∈ Y :

∀(x ∈ X, y ∈ Y) : φ(x, y∗)≥φ(x∗, y∗)≥φ(x∗, y).

6.118

SV = min
x∈X

max
y∈Y

φ(x, y) (SP)

♠ Fact: (SP) gives rise to two optimization problems:

(P) : Opt(P) = minx∈X

[
φ(x) := maxy∈Y φ(x, y)

]
= minx∈Xmaxy∈Y φ(x, y)

(D) : Opt(D) = maxy∈Y

[
φ(y) := minx∈X φ(x, y)

]
= maxy∈Y minx∈Xφ(x, y)

• We always have Öpt(P) ≥ Opt(D) [“weak duality”]
• φ has saddle points on X × Y iff both (P) and (D) are solvable with equal optimal
values: Opt(P) = Opt(D), that is,

min
x∈X

max
y∈Y

φ(x, y) = max
y∈Y

min
x∈X

φ(x, y)

[“strong duality”]. In this case the saddle points are exactly the pairs (x ∈ ArgminX φ, y ∈
ArgmaxY φ).

6.119

(P) : Opt(P) = minx∈X

[
φ(x) := maxy∈Y φ(x, y)

]
= minx∈Xmaxy∈Y φ(x, y)

(D) : Opt(D) = maxy∈Y

[
φ(y) := minx∈Xφ(x, y)

]
= maxy∈Y minx∈Xφ(x, y)

• Under our standing assumption (X,Y are nonempty convex compacts, φ is Lipschitz
continuous convex-concave), both (P) and (D) are solvable with equal optimal values,
that is, saddle points do exist.

♠ It is natural to quantify the (in)accuracy of an approximate saddle point (x, y) ∈ Z :=
X × Y by its saddle point residual

εSad(x, y) = φ(x)− φ(y) = [φ(x)−Opt(P)] + [Opt(D)− φ(y)]

This residual always is nonnegative and is zero iff (x, y) is a saddle point of φ.

6.120

♣ Vector field associated with a saddle point problem. Under our standing assump-
tions, we can associate with a convex-concave saddle point problem

min
x∈X

max
y∈Y

φ(x, y)

vector field

F (z = [x; y]) = [Fx(x, y);Fy(x, y)] : Z := X × Y → Ez := Ex × Ey
with

Fx(x, y) ∈ ∂xφ(x, y), Fy(x, y) ∈ ∂y[−φ(x, y)]

♠ Assumption: From now on, we assume that the vector field F : Z → Ez is bounded.

6.121

F (z = [x; y]) = [Fx(x, y);Fy(x, y)] : Z := X × Y → Ez := Ex × Ey
Fx(x, y) ∈ ∂xφ(x, y), Fy(x, y) ∈ ∂y[−φ(x, y)]

♠ Facts:
• F is monotone:

∀(z, z′ ∈ Z := X × Y) : 〈F (z)− F (z′), z − z′〉 ≥ 0

Indeed, setting z = (x, y), z′ = (x′, y′), we have

〈F (z)− F (z′), z − z′〉 = 〈Fx(x, y)− Fx(x′, y′), x− x′〉+ 〈Fy(x, y)− Fy(x′, y′), y − y′〉
≥ [φ(x, y)− φ(x′, y)] + [φ(x′, y′)− φ(x, y′)] + [(−φ)(x, y)− (−φ)(x, y′)] + [(−φ)(x′, y′)− (−φ)(x′, y)]
= 0

• Saddle points of φ on Z = X × Y are exactly the points z∗ ∈ Z such that

〈F (z), z − z∗〉 ≥ 0 ∀z ∈ Z.
♠ Note: When Y is a singleton, convex-concave saddle point problem

min
x∈X

max
y∈Y

φ(x, y)

becomes the problem of minimizing a convex function over X. “Convex minimization”
versions of the above facts read: For a Lipschitz continuous convex function f(x) : X →
R
• The field f ′(·) of subgradients of f is monotone: 〈f ′(x)− f ′(y), x− y〉 ≥ 0, x, y ∈ X
• Minimizers of f on X are exactly the points x∗ ∈ X such that 〈f ′(x), x−x∗〉 ≥ 0 ∀x ∈ X.

6.122

SV = min
x∈X

max
y∈Y

φ(x, y) (SP)

• X ⊂ Ex, Y ⊂ Ey are nonempty closed and bounded convex sets in Euclidean spaces
Ex, Ey
• φ(x, y) : Z := X × Y → R is the cost function which is Lipschitz continuous, convex in
x ∈ X and concave in y ∈ Y .
♣ Problems (SP) arise in a wide spectrum of applications. Our major interest in these
problems stems from the fact that numerous ”complex” and nonsmooth convex func-
tions f(x) admit saddle point representation:

f(x) = max
y∈Y

φ(x, y)

with convex-concave and smooth functions φ, which allows to reduce a nonsmooth
minimization problem

min
x∈X

f(x)

to a smooth convex-concave saddle point problem

min
x∈X

max
y∈Y

φ(x, y)

and this “gain in smoothness” possesses huge potential as far as computationally cheap
First Order methods are concerned.

6.123

Examples of saddle point reformulations:
• Maximum of smooth convex functions:

f(x) := max1≤i≤m fi(x) = maxy∈Y [φ(x, y) :=
∑

iyifi(x)]
[Y = {y ≥ 0,

∑
iyi = 1}]

When fi are smooth, so is φ; when fi are linear, φ is just bilinear.
• Norm-type functions:

‖Ax− b‖ = max
y:‖y‖∗≤1

[φ(x, y) = 〈y,Ax− b〉]

• Maximal eigenvalue of a symmetric matrix:

λmax(x) = max
y∈Y

[φ(x, y) = Tr(xy)], Y = {y � 0 : Tr(y) = 1}

Note: Smooth/bilinear saddle point representations admit fully algorithmic calculus.
For example,

General case:
fi(x) = maxyi∈Yi φi(x, yi), λi ≥ 0

⇒
∑

iλifi(x) = max
y=[y1;...;yk]∈Y1×...×Yk

[∑
i
λiφi(x, yi)

]
︸ ︷︷ ︸

φ(x,[y1;...;yk])

Bilinear case:
fi(x) = maxyi∈Yi[〈ai, x〉+ 〈bi, yi〉+ 〈x,Aiyi〉], λi ≥ 0

⇒
∑

iλifi(x) = max
y=[y1;...;yk]∈Y1×...×Yk

[∑
i〈λiai, x〉+ 〈λibi, yi〉+ 〈x, λiAiyi〉

]
= max

y=[y1;...;yk]∈Y1×...×Yk

[
〈
∑

iλiai, x〉+ 〈[λ1b1; ...;λkbk], y〉+ 〈x, [λ1A1, ..., λkAk]y〉
]

6.124

SV = min
x∈X

max
y∈Y

φ(x, y) (SP)

⇒ F (z = [x; y]) = [Fx(x, y) ∈ ∂xφ(x, y);Fy(x, y) ∈ ∂y[−φ(x, y)]].

• X ⊂ Ex, Y ⊂ Ey are nonempty closed and bounded convex sets in Euclidean spaces
Ex, Ey
• φ(x, y) : Z := X × Y → R is the cost function which is Lipschitz continuous, convex in
x ∈ X and concave in y ∈ Y .
♠ (SP) can be solved by MD. Indeed, let ‖ · ‖ be a norm on E = Ex × Ey and ω(·) be a
DGF for Z = X × Y which is compatible with ‖ · ‖. Consider the process

z1 ∈ Z; zt+1 = Proxzt(γtF (zt)); zt =
[∑t

τ=1γτ
]−1∑t

τ=1γτzτ
[zτ = [xτ ; yτ]]

♣ Fact I: One has

εSad(xt, yt) ≤
Θ + 1

2

∑T
τ=1γ

2
τ ‖F (zτ)‖2

∗∑T
τ=1γτ

, [Θ = maxz,z′∈Z Vz(z′)]

with all consequences related to the rate of convergence, stepsize policies, etc.

6.125

z1 ∈ Z; zt+1 = Proxzt(γtF (zt)); zt =
[∑t

τ=1γτ
]−1∑t

τ=1γτzτ
[zτ = [xτ ; yτ])]

Proof of Fact I: As always, we have
∀u = [ξ; η] ∈ Z :

∑t
τ=1γτ〈F (zτ), zτ − u〉 ≤ Θ + 1

2

∑T
τ=1γ

2
τ ‖F (zτ)‖2

∗
and

〈F (zτ), zτ − u〉 = 〈φ′x(xτ , yτ), xτ − ξ〉+ 〈−φ′y(xτ , yτ), yτ − η〉
≥ [φ(xτ , yτ)− φ(ξ, yτ)] + [−φ(xτ , yτ) + φ(xτ , η)]
= φ(xτ , η)− φ(ξ, yτ)

⇒ setting Γt =
∑t

τ=1γτ and λτ = γτ/Γt, we get∑t

τ=1
λτ [φ(xτ , η)− φ(ξ, yτ)]︸ ︷︷ ︸
≥φ(xt,η)−φ(ξ,yt)

≤
Θ + 1

2

∑t
τ=1γ

2
τ ‖F (zτ)‖2

∗∑T
τ=1γτ

.

⇒ ∀([ξ; y] ∈ X × Y) : φ(xt, η)− φ(ξ, yt) ≤
Θ + 1

2

∑t
τ=1γ

2
τ ‖F (zτ)‖2

∗∑T
τ=1γτ

.

The supremum of the left hand side in ξ ∈ X, η ∈ Y is εSad(xt, yt), and we arrive at the
required result

εSad(xt, yt) ≤
Θ + 1

2

∑T
τ=1γ

2
τ ‖F (zτ)‖2

∗∑T
τ=1γτ

,

6.126

Mirror-Prox Scheme

Saddle Point Mirror Descent for min
x∈X

max
y∈Y

φ(x, y):

z1 ∈ Z = X × Y ; zt+1 = Proxzt(γtF (zt)); zN = [γ1 + ...+ γN]−1
∑N

t=1 γtzt

♣ Consider the extragradient Saddle Point MD:

z1 ∈ Z = X × Y ; zt 7→ wt = Proxzt(γtF (zt));wt 7→ zt+1 = Proxzt(γtF (wt));

zt =
[∑t

τ=1γτ
]−1∑t

τ=1
γτwτ

♣ Fact II: Let F be Lipschitz:
‖F (z)− F (z′)‖∗ ≤ L‖z − z′‖.

Then the constant stepsizes
γt ≡ γ = 1

L
ensure that

εSad(zt) ≤
Θ

tγ
=

ΘL

t
, t = 1,2, ... [1/t rate!!!]

6.127

z1 ∈ Z;wt = Proxzt(γtF (zt)); zt+1 = Proxzt(γtF (wt));

zt =
[∑t

τ=1γτ
]−1∑t

τ=1
γτwτ

Proof of Fact II: Magic Inequality states

(a) ∀u ∈ Z : 〈γtF (wt), zt+1 − u〉 ≤ Vzt(u)− Vzt+1(u)− Vzt(zt+1)
(b) ∀v ∈ Z : 〈γtF (zt), wt − v〉 ≤ Vzt(v)− Vwt(v)− Vzt(wt)

Applying (b) to v = zt+1, we get

〈γtF (zt), wt − zt+1〉 ≤ Vzt(zt+1)− Vwt(zt+1)− Vzt(wt),
while (a) implies

〈γtF (wt), wt − u〉 ≤ Vzt(u)− Vzt+1(u)− Vzt(zt+1)+γt〈F (wt), wt − zt+1〉
⇒ 〈γtF (wt), wt − u〉 ≤ Vzt(u)− Vzt+1(u)− Vzt(zt+1)+γt〈F (zt), wt − zt+1〉+ γt〈F (wt)− F (zt), wt − zt+1〉

Taken together, these inequalities imply that

〈γtF (wt), wt − u〉 ≤ Vzt(u)− Vzt+1(u)+ [γt〈F (wt)− F (zt), wt − zt+1〉 − Vwt(zt+1)− Vzt(wt)]
≤ Vzt(u)− Vzt+1(u) +

[
1
2
γ2
t ‖F (zt)− F (wt)‖2

∗ − Vzt(wt)
]

Now let F be Lipschitz: ‖F (z)− F (z′)‖∗ ≤ L‖z − z′‖. Since Vzt(wt) ≥ 1
2
‖wt − zt‖2, we get

〈γtF (wt), wt − u〉 ≤ Vzt(u)− Vzt+1(u) +
1

2
‖wt − zt‖2[L2γ2

t − 1],

and we end up with

γt ≡ γ =
1

L
∀t⇒ γ〈F (wt), wt − u〉 ≤ Vzt(u)− Vzt+1(u)∀u ∈ Z,

whence by the same argument as in the end of proof of Fact I we have

εSad(zt) ≤
Θ

tγ
=

ΘL

t
, t = 1,2, ... [1/t rate!!!]

6.128

♣ Conclusion: When the objective of a convex optimization problem

Opt = min
x∈X

f(x)

with convex compact X admits saddle point representation:

f(x) = max
y∈Y

φ(x, y)

with convex-concave smooth (with Lipschitz continuous gradient) φ and convex compact
Y , we can solve the problem at the rate O(1/t), provided we can equip X and Y with
“computationally cheap” proximal setup (i.e., with norms and DGF’s resulting in easy-
to-compute prox-mappings).

6.129

Stochastic Saddle Point Mirror Descent
and

Acceleration by Randomization

♠ Consider a convex-concave saddle point problem

SV = min
x∈X

max
y∈Y

φ(x, y) (SP)

⇒ F (z = (x, y)) = [Fx(x, y) ∈ ∂xφ(x, y);Fy(x, y) ∈ ∂y[−φ(x, y)]]

• X ⊂ Ex, Y ⊂ Ey: nonempty closed and bounded convex sets in Euclidean spaces Ex, Ey
• φ : X × Y → R: Lipschitz continuous and convex-concave

♠ Z = X × Y is equipped with Proximal setup – a norm ‖ · ‖ on E = Ex × Ey and
a compatible with this norm DGF ω : Z → R.

♠ Assume that the field F is given by Stochastic Oracle:

When calling the oracle at step t, the query point being zt = (xt, yt), the oracle
returns a random estimate G(zt, ξt) of F (zt) which is unbiased and “stochasti-
cally bounded”:

∀z ∈ Z = X × Y : E{G(z, ξ)} = F (z) & E{‖G(z, ξ)‖2
∗} ≤ L2.

As always, ξ1, ξ2, ... are independent realizations of a random variable ξ.

6.130

SV = min
x∈X

max
y∈Y

φ(x, y) (SP)

F (x, y) = [Fx(x, y) ∈ ∂xφ(x, y);Fy(x, y) ∈ ∂y[−φ(x, y)]]
G(z, ξ) : Eξ{G(z, ξ)} = F (z) & Eξ{‖G(z, ξ)‖2

∗} ≤ L2 ∀z = [x; y] ∈ Z = X × Y
♠ Stochastic Saddle Point Mirror Descent for (SP) is the recurrence

z1 ∈ Z; zt+1 = Proxzt(γtG(zt, ξt)); zt =
[∑t

τ=1
γτ

]−1∑T

τ=1
γτzτ . [γτ > 0]

Theorem: [Lecture Notes, Theorem 5.3.6] For the above recurrence one has

E {εSad(zt)} ≤
7

2
·

2Θ + L2
∑t

τ=1γ
2
τ∑t

τ=1γτ
.[

Θ = maxu,v∈Z {Vu(v) := ω(v)− ω(u)− 〈v − u,∇ω(u)〉}
]

In particular, given a number N of iterations and setting

γt =

√
2Θ

L
√
N
, 1 ≤ t ≤ N,

we ensure that

E{εSad(zN)} ≤
7
√

2ΘL√
N

.

Note: Similar results hold true for Mirror Prox.

6.131

♣ Application: Matrix Game. Matrix Game problem is as follows:

SV = min
x∈∆n

max
y∈∆m

yTAx (MG)[
∆p = {u ∈ Rp : u ≥ 0,

∑
iui = 1}

]
Interpretation: Two players are playing an antagonistic game; the first selects a j ∈
{1, ..., n}, the second selects an i ∈ {1, ...,m}. The loss of the first player (i.e., the profit
of the second player) is Aij, where A is a given m× n matrix. Naturally, the first player
wants to reduce his losses, and the second player wants to increase his profit.
• When players make their choices simultaneously, there is no natural definition of
“equilibrium,” unless the matrix has a “saddle point” – some entry Ai∗,j∗ is minimal in
its column and is maximal in its row.
• In the general case, the concept of a solution to the game, going back to von Neumann
and Morgenstern, is to look what happens when the players repeat the matrix game many
times, drawing their choices at random independently of each other and across the time.
Denoting by x ∈ ∆n the probability distribution from which the first player draws his
choices, and by y ∈ ∆m similar distribution for the second player, the expected loss of
the first player (expected profit of the second player) will be

yTAx

Thus, (MG) can be thought of as the problem of finding the best randomized policies
of the players (called their mixed strategies); if both players are interested in their long
run losses and profits, sticking to the mixed strategies given by a saddle point of the
bilinear (and thus convex-concave) game (MG) will be optimal policies for every one of
them.

6.132

SV = min
x∈∆n

max
y∈∆m

yTAx (MG)[
∆p = {u ∈ Rp : u ≥ 0,

∑
iui = 1}

]
(MG) is just a primal-dual pair of LP programs:

Opt(P) = minx∈∆n
maxi RowT

i [A]x
Opt(D) = maxy∈∆m

minj ColTj [A]y

where RowT
i [A] is i-th row, and Colj[A] is j-th column in A.

⇒ (MG) can be solved by interior point LP methods.

6.133

SV = min
x∈∆n

max
y∈∆m

yTAx (MG)[
∆p = {u ∈ Rp : u ≥ 0,

∑
iui = 1}

]
♠ In the large-scale case, (MG) can be solved by Mirror Prox; with appropriate setup,
MP yields the efficiency estimate

εSad(xN , yN) ≤ O(1)
√

ln(n) ln(m) max
i,j
|Aij|/N

The complexity of a step is O(m+n) plus the complexity of two matrix-vector multipli-
cations:

∆n 3 x 7→ Ax, ∆m 3 y 7→ ATy

needed to compute the associated with (MG) vector field

F (x, y) =

[
AT

−A

] [
x
y

]
.

When A is a general-type dense matrix, the arithmetic complexity of finding an ε-solution
to the problem is therefore

Cdeterm(ε) = O(1)
√

ln(m) ln(n)mn
maxi,j |Aij|

ε
flop.

Can we do better?

6.134

♣ Observation: Computing matrix-vector multiplication
Rp 3 u 7→ Bu ∈ Rq

is easy to randomize:
— the vector v = abs[u]/‖u‖1 (abs acts coordinatewise) is a probabilistic vector (non-
negative entries summing up to 1). Treating v as a probability distribution on {1,2, ..., p},
we draw at random an index from this distribution and return

η = ‖u‖1sign(u)Col(B),

thus ensuring that E{η} = Bu.
• Generating a realization of η is cheap:
— drawing costs O(p) flop: in O(p) flop one computes the “cumulative distribution”

Uj = ‖u‖−1
1

∑
k<j|uk|, 1 ≤ j ≤ p,

of the probabilistic vector, generates ζ ∼ Uniform[0,1] and needs O(ln(p)) comparisons
to find by Bisection such that

U−1 < ζ ≤ U
— after is generated, computing η takes just O(q) flop

⇒ arithmetic cost of computing η is O(1)(p+ q)

• Whatever be a norm ‖ · ‖, the noise of our oracle is under control:

‖η‖ ≤ ‖u‖1 max
j
‖Colj[B]‖.

The situation is especially nice when ‖u‖1 can be bounded in advance.

6.135

SV = min
x∈∆n

max
y∈∆m

yTAx (MG)[
∆p = {u ∈ Rp : u ≥ 0,

∑
iui = 1}

]
⇒ F (x, y) =

[
AT

−A

] [
x
y

]
♠ Applying the above approach to (MG), we get a cheap randomized oracle for F ; a call
to this oracle costs just O(m+ n) flop, vs. the cost O(mn) of the precise computation
of F .
⇒Utilizing the cheap stochastic oracle in MD, we get an algorithm for solving (MG)
which ensures

E
{
εSad(xN , yN)

}
≤ O(1)

√
ln(m) ln(n)

(
maxi,j |Aij|√

N

)
,

with O(m+ n) flop per step.
⇒For every ε > 0, δ ∈ (0,1), one can build in (1 − δ)-reliable fashion an ε-solution to
(MG) at the cost of

Crand(ε) = C(δ) ln(n) ln(m)(m+ n)/χ2 flop
[χ = ε/maxi,j |Aij|: relative accuracy]

which for fixed δ, χ and large m,n is by orders of magnitude better than the best known
“deterministic cost”

Cdeterm(ε) = O(1) ·
√

ln(m) ln(n)mn/χ flop.

of ε-solution to (MG).

6.136

Crand(ε) = C(δ) ln(n) ln(m)(m+ n)/χ2 flop
[χ = ε/maxi,j |Aij|: relative accuracy]

Note: Our algorithm exhibits sublinear time behavior: for fixed χ and large m,n, reliable
design of ε-solution requires inspection of a negligibly small, going to 0 as m,n grow,
randomly selected fraction of the data.
An “ad hoc” algorithm with this property (in retrospect, pretty similar to Stochastic
MD Approximation) was discovered in 1995 by Grigoriadis and Khachiyan.

6.137

♣ Illustration: There are N houses in a city, i-th with wealth wi. Every evening, Burglar
selects a house i to be attacked, and Policeman selects his location at a house j. When
the burglary starts, the probability for Policeman to react to alarm and to prevent the
burglary is exp{−θd(i, j)}, where d(i, j) is the distance between locations i and j, so that
the expected profit of Burglar is Aij = wi[1− exp{−θd(i, j)}]. Our goal is to solve in
mixed strategies the resulting game

max
y∈∆N

min
x∈∆N

yTAx.

♠ Assuming an n×n equidistant grid of houses with wealth decreasing from the downtown
to outskirts, the resulting (N := n2)×N matrix game was solved by the state-of-the-art
commercial LP Interior Point Method (IPM) mosekopt, by the Deterministic Mirror Prox
and by the randomized MD seeking εSad < 0.001, with CPU limit of 5,300 sec. Here are
the results:

IPM DMP RMD
N Steps CPU Gap Steps CPU Gap Steps CPU Gap

1600 21 120 6.0e-9 78 6 1.0e-3 10556 264 1.0e-3
6400 21 6930 1.1e-8 80 31 1.0e-3 10408 796 1.0e-3

14400 not tested 95 171 1.0e-3 9422 1584 1.0e-3
40000 out of memory 15 5533 0.022 10216 4931 1.0e-3

Policeman vs. Burglar, N houses

6.138

0

50

100

150

200

0

50

100

150

200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0

50

100

150

200

0

50

100

150

200
0

0.05

0.1

0.15

0.2

0.25

Wealth Policeman Burglar

0 2000 4000 6000 8000 10000 12000
10

−4

10
−3

10
−2

10
−1

10
0

εSad vs. iteration count
Policeman vs. Burgrlar, N = 40,000. RMD with 10,216 steps (4931 sec)

6.139

Smooth Convex Minimization:
Nesterov’s Fast Gradient Method

♣ Problem of interest: Composite minimization

Opt = min
x∈X
{φ(x) = Ψ(x) + f(x)}

• X: closed convex nonempty subset in Euclidean space E
(X,E) is equipped with proximal setup (ω(·), ‖ · ‖)

• Ψ : X → R: convex and continuous
• f : X → R: represented by FO oracle convex function

with Lipschitz continuous gradient:
∀x, y ∈ X : ‖∇f(x)−∇f(y)‖∗ ≤ Lf‖x− y‖

♠ Main Assumption: We are able to compute composite prox-mappings, i.e., solve
auxiliary problems

min
x∈X
{ω(x) + 〈h, x〉+αΨ(x)} [α ≥ 0]

6.140

♥ Example: LASSO problem

minx∈X
{ Ψ(x)︷ ︸︸ ︷
λ‖x‖E +

f(x)︷ ︸︸ ︷
1

2
‖A(x)− b‖2

2

}

• ‖ · ‖E:

(a) block `1/`2 norm

∑n
j=1 ‖xj‖2 on

E = Rk1 × ...×Rkn (`1 case)
(b) nuclear norm on the space E of block

diagonal matrices of a given block
diagonal structure (nuclear norm case)

• A(·) : E → Rm: linear mapping
• X: either the unit ‖ · ‖E-ball, or the entire E

♥ For properly chosen proximal setup, Main Assumption is satisfied: computing com-
posite prox mapping

min
x∈X
{ω(x) + 〈h, x〉+αΨ(x)} [α ≥ 0]

takes O(dimE) a.o. in the case of (a) and reduces to computing singular value decom-
position of a matrix from E in the case of (b).

6.141

Example: ‖ · ‖E is ‖ · ‖1 norm on Rn (“sparse recovery”).
• With Ball setup ‖ · ‖ = ‖ · ‖2, ω(·) = 1

2
‖ · ‖2

2 computing composite prox-mapping reduces
to solving the problem

minx

{∑
i

[hixi + β|xi|+
1

2
x2
i] : x ∈ X

}
[β ≥ 0]

The problem is trivial when X = Rn or X is a box a ≤ x ≤ b. When X is the unit
‖ · ‖p-ball, 1 ≤ p <∞, the problem still is easy – it reduces to one-dimensional Lagrange
dual problem

max
λ≥0

[
L(λ) := min

x∈Rn

∑
i

[hixi + β|xi|+
1

2
x2
i + λ|xi|p]− λ︸ ︷︷ ︸

easy to compute

]

• When X = E or X = {x ∈ E : ‖x‖E ≤ 1}, computing composite prox-mapping remains
easy when the Ball proximal setup is replaced with `1/`2 one.

6.142

Nesterov’s Fast Gradient algorithm for Composite Minimization

♣ Problem:

Opt = min
x∈X⊂E

{φ(x) := Ψ(x) + f(x)}
• Ψ, f : convex and
∀x, y ∈ X : ‖∇f(x)−∇f(y)‖∗ ≤ Lf‖x− y‖

(CP)

♠ Assumptions: Lf is known and (CP) is solvable with an optimal solution x∗.
♠ The algorithm is described in terms of proximal setup (ω(·), ‖ · ‖) for X and auxiliary
sequence

{Lt ∈ (0, Lf]}∞t=0
which can be adjusted on-line.
Recall that DGF ω defines Bregman distance

Vx(y) = ω(y)− ω(x)− 〈∇ω(x), y − x〉 [x, y ∈ X]

6.143

Opt = min
x∈X⊂E

{φ(x) := Ψ(x) + f(x)}

♣ Algorithm:
♠ Initialization: Set

A0 = 0, y0 = xω = argminX ω, ψ0(x) = Vxω(x)
and select y+

0 ∈ X such that φ(y+
0) ≤ φ(y0).

♠ Step t = 0,1,2, ...: Given ψt(·) = ω(·) + αΨ(·)+ <affine form> [α ≥ 0], y+
t ∈ X,

At ∈ R+, and Lt, 0 < Lt ≤ Lf ,
• Compute zt = argmin

x∈X
ψt(x) (reduces to computing composite prox-mapping)

• Find the positive root at+1 of the equation Lta2
t+1 = At + at+1 and set

At+1 =At + at+1, τt = at+1/At+1 ∈ (0,1]
• Set xt+1 =τtzt + (1− τt)y+

t and compute f(xt+1), ∇f(xt+1)

• Compute x̂t+1 = argmin
x∈X

{
〈∇f(xt+1), x〉+ Ψ(x) + 1

at+1
Vzt(x)

}
(reduces to computing

composite prox-mapping)
• Set

yt+1 = τtx̂t+1 + (1− τt)y+
t

ψt+1(x) = ψt(x) + at+1 [f(xt+1) + 〈∇f(xt+1), x− xt+1〉+ Ψ(x)]

and select somehow y+
t+1 ∈ X such that φ(y+

t+1) ≤ φ(yt+1).
• Finally, select Lt+1 ∈ (0, Lf].

Step t is completed; go to step t+ 1.

6.144

♣ Theorem [Yu. Nesterov ’83, ’07] Assume that the sequence {Lt ∈ (0, Lf]} is such
that

Vzt(x̂t+1)
At+1

+ 〈∇f(xt+1), yt+1 − xt+1〉+ f(xt+1) ≥ f(yt+1)

(this for sure is the case when Lt ≡ Lf). Then

φ(y+
t)−Opt ≤ A−1

t Vxω(x∗) ≤
4Lf
t2

Vxω(x∗), t = 1,2, ...

6.145

♠ Illustration: As applied to a solvable LASSO problem

x∗ = argmin
x

{
φ(x) := λ‖x‖E +

1

2
‖A(x)− b‖2

2

}
with ‖ · ‖E either (a) block `1/`2 norm on E = Rk1 × ...×Rkn︸ ︷︷ ︸

n factors

, or (b) nuclear norm on

E = Rp×q with n = min[p, q], the Fast Gradient method with appropriate proximal setup
in t = 1,2, ... steps ensures

φ(y+
t) ≤ Opt +O(ln(n+ 1))

‖A‖2
E,2

t2
‖x∗‖2

E

where ‖A‖E,2 = max{‖A(x)‖2 : ‖x‖E ≤ 1}

6.146

♣ Note: O(1/t2) rate of convergence is, seemingly, the best one can expect from oracle-
based methods in the large scale case.
The precise statement is as follows:
♥ Let n be a positive integer. Consider Least Squares problems

Opt = min
x
‖Ax− b‖2

2 (QP)

with n× n symmetric matrices A.
For every positive reals R,L and every number t ≤ n/4 of steps, for every t-step solution
algorithm B operating with the “multiplication oracle” u 7→ Au one can find an instance
of (QP) such that
• the spectral norm of A does not exceed L,
• Opt = 0, and the ‖ · ‖2-norm of some optimal solution does not exceed R,
• the approximate solution y generated by B, as applied to the instance, after t calls to
the oracle, satisfies

‖Ay − b‖2
2 ≥ O(1)

L2R2

t2

6.147

How it Works:
Fast Composite Minimization for LASSO

♣ Test problem:
Opt = minx

{
φ(x) := 0.01‖x‖1 + 1

2
‖Ax− b‖2

2

}
with 4096× 2048 randomly generated matrix A.

Method Setup Iterations CPU, sec Nonoptimality

IPM — 11 103.1 <1.e-12
FGr Ball setup 512 36.3 2.4e-6
FGr `1/`2 setup 512 36.5 1.2e-7

0 100 200 300 400 500 600
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0 100 200 300 400 500 600
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Ball setup `1 setup

Progress in accuracy φ(y+
t)−Opt

φ(y+
0)−Opt vs. t

Platform: 2× 3.40 GHz CPU, 16.0 GB RAM, 64-bit Windows 7

6.148

Prehistory of Fast Gradients

♠ Nesterov’s Fast Gradient Algorithm hardly can be treated as intuitive, and its justifi-
cation, while short, is a miraculous purely algebraic manipulation. We believe that the
construction is a miracle, and as such it should be learned and used, but not “explained.”
This being said, the “prehistory predecessors” of this magic algorithm are quite under-
standable.
Situation and goal: Convex function f : Rn → R has Lipschitz continuous with constant
1 gradient:

‖f ′(x)− f ′(y)‖2 ≤ ‖x− y‖2 ∀x, y
and achieves its minimum at some point x∗. We want to design a First Order algorithm
which ensures that

f(xk)− f(x∗) ≤ O(1/k2), k = 1,2, ...

6.149

Step 0: Quadratic case. Assume that f is quadratic. Then the “method of choice”
is Conjugate Gradients which, on a closest inspection, indeed converges at the rate
O(1/k2), and it is easy to understand simple reasons for that.
• Let the starting point be x0 = 0. Then k-th iterate of CG is the minimizer of f on
the linear span of the gradients

gt = f ′(xt)

at the iterates with t < k. As a result,
A. The gradients gk = f ′(xk) along the CG trajectory are mutually orthogonal, and gk is
orthogonal to xk;
B. f(xk+1) ≤ f(xk)− 1

2
‖gk‖2

2.
Indeed, for every function h with Lipschitz continuous, with constant 1, gradient it holds

h(x− h′(x)) ≤ h(x)−
1

2
‖h′(x)‖2

2.

and for CG we clearly have f(xk+1) ≤ f(xk − gk).

6.150

• Let Vk = f(xk)− f(x∗), and let λk be positive reals. We have∑k
t=1 λtVt ≤

∑k
t=1 λt〈gt, xt − x∗) [by convexity]

=
∑k

t=1 λt〈gt,−x∗〉 [gt and xt are orthogonal!]
= 〈

∑k
t=1 λtgt,−x∗〉

≤ 1
2
‖
∑k

t=1 λtgt‖2
2 + 1

2
‖x∗‖2

2 [Cauchy Inequality]

= 1
2

∑k
t=1 λ

2
t ‖gt‖2

2 + 1
2
‖x∗‖2

2 [gt is orthogonal to
∑

τ<t λτgτ !]

≤
∑k

t=1 λ
2
t [Vt − Vt+1] + 1

2
‖x∗‖2

2 [since f(xt+1) ≤ f(xt)− 1
2
‖gt‖2

2]

=
∑k

t=1[λ2
t − λ2

t−1]Vt − λ2
kVk+1 + 1

2
‖x∗‖2

2 [here λ0 = 0]

From now on let λt > 0, t ≥ 1, be given by the recurrence

λ2
t − λ2

t−1 = λt [λ0 = 0]

• Then the above computation as applied with λt’s just specified yields

λ2
kVk+1 ≤

1

2
‖x∗‖2

2

and, as is immediately seen, λt ≥ t/2 for all t

⇒ f(xk+1)−min f ≤
2‖x∗‖2

2

k2

6.151

∑k
t=1 λtVt ≤

∑k
t=1 λt〈gt, xt − x∗) [by convexity]

=
∑k

t=1 λt〈gt,−x∗〉 [gt and xt are orthogona!]
= 〈

∑k
t=1 λtgt,−x∗〉

≤ 1
2
‖
∑k

t=1 λtgt‖2
2 + 1

2
‖x∗‖2

2 [Cauchy Inequality]

= 1
2

∑k
t=1 λ

2
t ‖gt‖2

2 + 1
2
‖x∗‖2

2 [gt is orthogonal to
∑

τ<t λτgτ !]

≤
∑k

t=1 λ
2
t [Vt − Vt+1] + 1

2
‖x∗‖2

2 [since f(xt+1) ≤ f(xt)− 1
2
‖gt‖2

2]

=
∑k

t=1[λ2
t − λ2

t−1]Vt − λ2
kVk+1 + 1

2
‖x∗‖2

2 [here λ0 = 0]

Step 1. From Quadratic to Smooth Convex Case via 2D minimization. Looking
at the above computation, observe that it still goes through if all that we ensure is
a. orthogonality of gk = f ′(xk) to xk and to

∑k−1
t=1 λtgt, k = 1,2, ...

b. inequality f(xk+1) ≤ f(xk)− 1
2
‖gk‖2

2, k = 1,2, ...
Note:
• To ensure a, it suffices to define xk as the minimizer of f on (any) linear subspace
containing the vector

∑k−1
t=1 λtgt

• To ensure b, it suffices to ensure that f(xk+1) ≤ f(xk − gk).
⇒We arrive at O(1/k2) algorithm as follows:
Set x0 = 0 and for k = 1,2, ...
— given xk−1, set x̂k = xk−1 − gk−1;

— define xk as the minimizer of f on the linear span of x̂k and
∑k−1

t=1 λtgt.
The required 2D minimization can be carried out (at nearly no cost) by Center of Gravity
or by Ellipsoid Algorithm.
Note: Historically, this result was first obtained circa ’79 with different selection of λk’s;
the above elegant rule is part of Nesterov’s breakthrough (1982)

6.152

Step 2: From 2D minimization to Line Search. Consider the following modification of the previous
algorithm: Set x0 = 0, and for k = 1,2, ...
— given xk−1, set x̂k = xk−1 − gk−1

— specify xk as the minimizer of f on the line x̂k + R

[
x̂k +

∑k−1

t=1
λtgt

]
.

For this algorithm, f(xt+1) ≤ f(x̂t+1)≤ f(xt)− 1
2
‖gt‖2

2, i.e.,

1

2
‖gt‖2

2 ≤ Vt − Vt+1, (+)

gt is orthogonal to x̂t +
∑t−1

s=1
λsgs:

〈gt, x̂t〉 = −〈gt,
∑t−1

s=1
λsgs〉 (!)

and xt = x̂t + γt[x̂t +
∑t−1

s=1
λsgs] for some γt ∈ R, whence

−xt = −(1 + γt)x̂t − γt
∑t−1

s=1
λsgs (∗)

Now,
−Vt ≥ 〈gt, x∗ − xt〉 [by convexity]

⇔ −Vt ≥ 〈gt, x∗〉+ 〈gt,−xt〉
= 〈gt, x∗〉+ (1 + γt)〈gt,−x̂t〉 − γt〈gt,

∑t−1

s=1
λsgs〉 [by (∗)]

⇒ −Vt ≥ 〈gt, x∗〉+ 〈gt,
∑t−1

s=1
λsgs〉 [by (!)]

⇒ λtVt + 〈λtgt, x∗〉+ 〈λtgt,
∑t−1

s=1
λsgs〉 ≤ 0

⇔ λtVt + 〈λtgt, x∗〉+ 1
2
‖
∑t

s=1
λsgs‖2

2 −
1
2
‖
∑t−1

s=1
λsgs‖2

2 −
1
2
λ2
t ‖gt‖2

2 ≤ 0

⇒
∑k

t=1
λtVt + 〈

∑k

t=1
λtgt, x∗〉+ 1

2
‖
∑k

t=1
λtgt‖2

2 −
1
2

∑k

t=1
λ2
t ‖gt‖2

2 ≤ 0 [summing up over t]

⇒
∑k

t=1
λtVt−1

2
‖
∑k

t=1
λtgt‖2

2 −
1
2
‖x∗‖2

2 + 1
2
‖
∑k

t=1
λtgt‖2

2 ≤
1
2

∑k

t=1
λ2
t ‖gt‖2

2 [due to 〈a, b〉 ≥ −1
2
‖a‖2

2 −
1
2
‖b‖2

2]

≤
∑k

t=1
λ2
t [Vt − Vt+1] [by (+)]

⇒
∑k

t=1
λtVt ≤ 1

2
‖x∗‖2 +

∑k

t=1
λ2
t [Vt − Vt+1]

The concluding inequality is exactly what led us to Vk+1 ≤
‖x∗‖2

2

2λ2
k

≤ 2‖x∗‖2
2

k2

6.153

♣ The above algebraic manipulation results in O(1/k2) algorithm

xk−1 7→ x̂k := xk−1 − gk−1 7→ xk := x̂k + γk[x̂k +
∑k−1

t=1
λtgt]

γk ∈ Argminγ∈R f(x̂k + γ[x̂k +
∑k−1

t=1
λtgt])[

gt = f ′(xt), λ2
t − λ2

t−1 = λt, λ0 = 0, x0 = 0
]

Nesterov’s breakthrough (1982) was in replacing the line search for identifying γk with explicit formula for
γk. This required completely new justification of the algorithm and paved road to important extensions,
including
• passing from unconstrained to constrained minimization,
• passing from Euclidean to general proximal algorithms,
• passing from smooth convex to composite convex minimization,
• ...

6.154

Beyond the Scope of Proximal Algorithms:
Conditional Gradients

Opt = minx∈X f(x)

♣ Fact: All considered so far “computationally cheap” large scale alternatives to IPM’s
were proximal type First Order methods
♠ But: In order to be computationally cheap, a proximal type method should operate
with problems on Favorable Geometry domains X (those allowing for Proximal setup
(‖ · ‖, ω(·)) with moderate ω-capacity Θ, in order to have a reasonable iteration count)
admitting easy to compute prox-mappings (“Simple Geometry,” otherwise an iteration
becomes expensive).

6.155

♠ Both Favorable and Simple Geometry requirements can be violated. For example,
• when X is a box, Favorable Geometry is missing
• when X is a nuclear norm ball in Rn×n or a spectahedron (the set of � 0 matrices
with unit trace) in Sn, we do have Favorable Geometry, but computing the associated
prox-mapping requires singular value decomposition of n × n matrix (or the eigenvalue
decomposition of a symmetric n× n matrix), and both these computations require

O(n3) = O((dimX)3/2) a.o.
While much cheaper than the cost O((dimX)3) = O(n6) a.o. of an IPM iteration, O(n3)
a.o. prox-mapping for large n becomes prohibitively time consuming.
Note: nuclear norm balls/spectahedrons arise naturally in many important applications,
including, but not reducing to, low rank matrix recovery, multi-class classification in
Machine Learning and high dimensional Statistics (and more generally – large scale
Semidefinite programming).

6.156

♠ Another important example of generic problem with Complex Geometry is Total Vari-
ation based Image Reconstruction

min
x∈Rm×n

{
λ ·TV(x) +

1

2
‖A(x)− b‖2

2

}
,

where x = [xij] ∈ Rm×n is an (m× n)-pixel image, and TV(x) is the Total Variation:

TV(x) =
m−1∑
i=1

n∑
j=1

|xi+1,j − xi,j|+
m∑
i=1

n−1∑
j=1

|xi,j+1 − xi,j|

— the `1-norm of the discrete gradient of x = [xij]. Restricted to the space Mm,n
0 of

m× n images with zero mean, TV becomes a norm.
For the unit TV-ball, no DGF compatible with the TV norm and leading to easy-to-
compute prox mapping is known...

6.157

Linear Minimization Oracle

♣ Observation: When X ⊂ E admits a proximal setup with easy-to-compute prox-
mapping, X definitely admits a computationally cheap Linear Minimization Oracle
(LMO) — a procedure which, given on input a linear form 〈η, ·〉, returns

x[η] ∈ Argminx∈X〈η, x〉
Indeed, the optimization program

min
x∈X
〈η, x〉

is the “limiting case,” as θ → +0, of the programs

min
x∈X
{θω(x) + 〈η, x〉}.

♠ Fact: Admitting a cheap LMO is a much weaker requirement than admitting proximal
setup with cheap prox-mapping, and there are important domains X with Complex
Geometry admitting relatively cheap Linear Minimization Oracle.

6.158

Examples:
A: Nuclear Norm ball X = {x ∈ Rm×n : ‖x‖nuc ≤ 1}. Here computing x[η] reduces to
finding the left and the right leading singular vectors of η ∈ Rm×n, i.e., to solving the
problem

max
‖u‖2≤1,‖v‖2≤1

uTηv.

For large m,n, this is incomparably easier than finding full singular value decomposition
of η required to compute prox-mapping.
B: Spectahedron X = {x ∈ Sn : x � 0,Tr(x) = 1}. Here computing x[η] reduces to
finding the leading eigenvector of −η, i.e., to solving the problem

min
‖u‖2=1

uTηu.

For large n, this is incomparably easier than finding full eigenvalue decomposition of η
required to compute prox-mapping.

6.159

Examples (continued):
C: Unit TV-ball X = {x ∈ Mm,n

0 : TV(x) ≤ 1}: For η ∈ Mm,n
0 , a point x[η] ∈

Argminx∈X Tr(ηxT) is readily given by the optimal Lagrange multipliers for the capaci-
tated network flow problem

max
t,f
{t : Γf = tη, ‖f‖∞ ≤ 1}

Γ: incidence matrix of the network with nodes (i, j),
1 ≤ i ≤ m, 1 ≤ j ≤ n, and arcs (i, j)→ (i+ 1, j),
(i, j)→ (i, j + 1)

6.160

♠ Illustration:

10
3.1

10
3.2

10
3.3

10
3.4

10
3.5

10
3.6

10
3.7

10
3.8

10
3.9

10
0

10
3.1

10
3.2

10
3.3

10
3.4

10
3.5

10
3.6

10
3.7

10
3.8

10
3.9

10
0

10
1

10
2

10
2

10
3

10
4

10
0

10
1

10
2

A B C
A: CPU ratio “full svd”/”finding leading singular

vectors” for n× n matrix vs. n
n 1024 2048 4096 8192

CPU ratio 0.5 2.6 4.5 7.5
Full svd for n = 8192 takes 475.6 sec!

B: CPU ratio “full evd”/“finding leading
eigenvector” for n× n symmetric matrix vs. n

n 1024 2048 4096 8192
CPU ratio 2.0 4.1 7.9 13.0

Full evd for n = 8192 takes 142.1 sec!
C: CPU ratio “metric projection”/“LMO

computation” for TV ball in Mn,n
0 vs. n

n 129 256 512 1024
CPU ratio 10.8 8.8 11.3 20.6

Metric projection onto TV ball for n = 1024
takes 1062.1 sec!

Platform: 2× 3.40 GHz CPU, 16.0 GB RAM, 64-bit Windows 7

6.161

Conditional Gradient Algorithm

Opt = minx∈X f(x)
[• X ⊂ E: convex compact set • f : X → R: convex]

(CM)

W.l.o.g. we assume that X linearly spans the embedding Euclidean space E.
♣ When X is given by Linear Minimization oracle and f is smooth, (CM) can be solved
by Conditional Gradient (CndG), a.k.a. Frank-Wolfe, algorithm given by the recurrence

x1 ∈ X, xt+1 ∈ X : f(xt+1) ≤ f
(
xt + 2

t+1
(x+

t − xt)
)
,[

x+
t = x[∇f(xt)] ∈ Argminy∈X〈∇f(xt), y〉

]
f t∗ = maxτ≤t

[
f(xτ) + 〈∇f(xτ), x+

τ − xτ〉
]
≤ Opt

♠ Theorem: Let f : X → R be convex and (κ, L)-smooth:

∀x, y ∈ X :f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L
κ
‖x− y‖κX[

• L <∞, κ ∈ (1,2]: parameters
• ‖ · ‖X: norm with the unit ball 1

2
[X −X]

]
When solving (CP) by CndG, one has for t = 2,3, ...

f(xt)−Opt ≤ f(xt)− f∗t ≤
22κ

κ(3− κ)
·

L

(t+ 1)κ−1

6.162

∀x, y ∈ X :f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L
κ
‖x− y‖κX[

• L <∞, κ ∈ (1,2]: parameters
] (!)

Note: A sufficient condition for (!) is Hölder continuity of ∇f(x):
‖∇f(x)−∇f(y)‖X,∗ ≤ L‖x− y‖κ−1

X ∀x, y ∈ X
For convex f and κ = 2, this condition is also necessary for (!).

6.163

∀x, y ∈ X :f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L
κ
‖x− y‖κX

♣ Typically, the CndG rate of convergence O(1/T κ−1) is not the best we can hope for.
For example, when κ = 2 and X is either
• the unit ‖ · ‖p ball in Rn with 1 ≤ p ≤ 2, or
• the unit nuclear norm ball in Rn×n,

Nesterov’s Fast Gradient method converges at the rate
O(1) ln(n+ 1)L2/t2,

and CndG only at the rate O(1)L/t. In fact,
♥ In Favorable Geometry case, the only, if any, disadvantage of proximal algorithms as
compared to CndG is the necessity to compute prox mappings, which could be expensive
for problems with Complex Geometry.

6.164

♠ Beyond the case of Favorable Geometry, CndG can be optimal.
Fact: Let X be n-dimensional box:

X = {x ∈ Rn : ‖x‖∞ ≤ 1}.
Then for every t ≤ n, L < ∞, κ ∈ (1,2], and every utilizing local oracle t-step method
B for minimizing (κ, L)-smooth convex functions over X there exists a function f in the
family such that for the approximate minimizer xB of f generated by B it holds

f(xB)−min
X

f ≥
O(1)

ln(n)

L

tκ−1

⇒When minimizing smooth convex functions, represented by a local oracle, over an
n-dimensional box, t-step CndG cannot be accelerated by more than O(ln(n)) factor,
provided t ≤ n.
• The result remains true when replacing n-dimensional box X with its matrix analogy

{x ∈ Rn×n : spectral norm of x is ≤ 1}
• When minimizing (κ, L)-smooth functions over n-dimensional ‖·‖p-balls with 2 ≤ p ≤ ∞,
the rate-of-convergence advantages of proximal algorithms over CndG rapidly deteriorate
as p grows and disappears (up to O(ln(n))-factor) when p becomes as large as O(ln(n)).

6.165

Proof of Theorem

(a) f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L
κ
‖y − x‖κX

(b) f(xt+1) ≤ f(xt + γt(x
+
t − xt)),

γt = 2
t+1

, x+
t ∈ Argminy∈X〈∇f(xt), y〉

f t∗ := max
τ≤t

[
f(xτ) + 〈∇f(xτ), x

+
τ − xτ〉

]
︸ ︷︷ ︸

≤minX f

?⇒? f(xt)− f t∗ ≤ 2κ+1L
κ(3−κ)

γκ−1
t (!t), t ≥ 2

Let
εt = f(xt)− f t∗, et = 〈∇f(xt), xt − x+

t 〉

• f t∗ ≥ f(xt) + 〈∇f(xt), x
+
t − xt〉 ⇒ et ≥ εt

We have

(c) ‖xt − x+
t ‖X ≤ 2

⇒ f(xt+1) ≤ f(xt + γt(x
+
t − xt)) [by (b)]

≤ f(xt) + γt〈∇f(xt), x
+
t − xt〉+ L

κ
[2γt]κ

[by (a), (c)]
= f(xt)− γtet + 2κL

κ
γκt

≤ f(xt)− γtεt + 2κL
κ
γκt [since et ≥ εt]

⇒ εt+1 = f(xt+1)− f t+1
∗ ≤ f(xt+1)− f t∗

[since f t+1
∗ ≥ f t∗]

≤ εt(1− γt) + 2κL
κ
γκt

6.166

[0 ≤] εt+1 ≤ εt(1− γt) + 2κL
κ
γκt (∗t)

?⇒? εt ≤ 2κ+1L
κ(3−κ)

γκ−1
t , t ≥ 2 [γt = 2

t+1
] (!t)

• By (∗2), we have ε2 ≤ 2κL
κ
⇒ ε2 ≤ 2κ+1L

κ(3−κ)
(2/3)κ−1 due to 1 < κ ≤ 2 ⇒ (!2) holds true.

• Assuming (!t) true for some t ≥ 2, we have
εt+1 ≤ 2κ+1L

κ(3−κ)
γκ−1
t (1− γt) + 2κL

κ
γκt [by (∗t) and (!t)]

= 2κ+1L
κ(3−κ)

[
γκ−1
t − κ−1

2
γκt
]

= 2κ+1L
κ(3−κ)

2κ−1
[
(t+ 1)1−κ + (1− κ)(t+ 1)−κ

]
≤ 2κ+1L

κ(3−κ)
2κ−1(t+ 2)1−κ [by convexity of (t+ 1)1−κ]

= 2κ+1L
κ(3−κ)

γκ−1
t+1 ⇒ (!t+1) holds true.

Thus, (!t) holds true for all t, Q.E.D.

6.167

Conditional Gradient Algorithm for Norm-regularized Smooth Convex
Minimization

Source: Harchaoui, Z., Juditsky, A., Nemirovski, A. Conditional Gradient Algorithms for Norm-

Regularized Smooth Convex Optimization. Mathematical Programming 152:1-2 (2015), 75–112. https:

//www2.isye.gatech.edu/~nemirovs/HarchaouiJudNem.pdf

♣ “As is”, CndG is applicable only to minimizing smooth convex functions on bounded
and closed convex domains.
Question: How to apply CndG to Composite Minimization problem

Opt = min
x∈K
{λ‖x‖+ f(x)}

• K: closed convex cone in Euclidean space E
• ‖ · ‖: norm on E
• λ > 0: penalty
• f : K→ R: convex function with Lipshitz continuous

gradient:
‖∇f(x)−∇f(y)‖∗ ≤ Lf‖x− y‖, x, y ∈ K

♠ Main Assumption: We have at our disposal LMO oracle for the intersection of the
unit ‖ ·‖-ball with the cone K. Given on input a linear form 〈η, ·〉 on E, the oracle returns

x[η] ∈ Argminx{〈η, x〉 : x ∈ K, ‖x‖ ≤ 1}
Examples:
A. E = Rm×n, ‖ · ‖ = ‖ · ‖nuc, K = E
B. E = Sn, ‖ · ‖ = ‖ · ‖nuc, K = Sn+ = {x ∈ E : x � 0}
C. E = Mm,n

0 , ‖ · ‖ = TV(·), K = E.

6.168

♣ We can reformulate the problem of interest as

Opt = min
[x;r]∈K+

{φ(x, r) := λr + f(x)}

K+ = {[x; r] ∈ E+ := E ×R : x ∈ K, ‖x‖ ≤ r}
♠ Assumption: There exists D∗ <∞ such that

y := [x; r] ∈ K+ & r > D∗ ⇒ φ(y) > φ(0),

and we are given a finite upper bound D+ on D∗.
Note: The efficiency estimate for the forthcoming method depends on D∗, and not on
D+!
♠ Algorithm:
• Initialization: Set y1 = 0 ∈ K+

• Step t = 1,2, ... Given yt = [xt; rt] ∈ K+,
• compute ∇f(xt)
• compute x+

t = x[∇f(xt)] ∈ Argminx {〈∇f(xt), x〉 : x ∈ K, ‖x‖ ≤ 1}
• set ∆t = Conv

{
yt,0, D+[x+

t ; 1]
}
⊂ K+ and find yt+1 ∈ K+ : φ(yt+1) ≤ min

y∈∆t

φ(y)

Step t is completed; pass to step t+ 1.

6.169

minx∈K [λ‖x‖+ f(x)]⇔ min[x;r]∈K+ [φ(x, r) = λr + f(x)][
K+ = {[x; r] : x ∈ K, r ≥ ‖x‖}

]
♠ Algorithm:
• Initialization: Set y1 = 0 ∈ K+

• Step t = 1,2, ... Given yt = [xt; rt] ∈ K+,
• compute ∇f(xt)
• compute x+

t = x[∇f(xt)] ∈ Argminx {〈∇f(xt), x〉 : x ∈ K, ‖x‖ ≤ 1}
• set ∆t = Conv

{
yt,0, D+[x+

t ; 1]
}
⊂ K+ and find yt+1 ∈ K+ : φ(yt+1) ≤ min

y∈∆t

φ(y)

Geometry of step
• K: quadrant on the XY plane • black polygon: the set {x ∈ K : ‖x‖ ≤ 1}
• blue polygon: intersection of K+ with the hyperplane r = 1
• a: current iterate yt • b: x+

t ∈ argminx∈K,‖x‖≤1〈∇f(yt), x〉 • c: D+ · [x+
t ; 1]

• yt+1 ∈ K+: φ(yt+1) ≤ miny∈∆t φ(y), ∆t: triangle with vertices o,a,c

Note: One can set yt+1 ∈ Argminy∈∆t
φ(y). With this policy, a step requires minimizing

φ over a 2D triangle ∆t, which can be done within machine precision in O(1) steps (e.g.,
by the Ellipsoid method).

6.170

Opt = min
[x;r]∈K+

{φ(x, r) := λr + f(x)}

K+ = {[x; r] ∈ E+ := E ×R : x ∈ K, ‖x‖ ≤ r}
♣ Theorem: For the outlined algorithm,

φ(yt)−Opt ≤
8LfD2

∗
t+ 14

, t = 2,3, ...

♠ Bundle Implementation: We can set

yt+1 ∈ Argminy {φ(y) : y ∈ Conv{0 ∪ Yt}} (∗)
Yt ⊂ K+: finite set containing yt = [xt; rt] and D+[x+

t ; 1], with
x+
t ∈ Argminx {〈∇f(xt), x〉 : x ∈ K, ‖x‖ ≤ 1}

For example, we can comprise Yt of yt, D+[x+
t ; 1] and several of the previous iterates

y1, ..., yt−1.
♥ Bundle approach is especially attractive when

f(x) = Ψ(Ax+ b)

for easy to compute Ψ, like Ψ(u) = 1
2
uTu. Here computing f , ∇f at a convex (or

linear) combination x =
∑
λixi of points xi with already computed Axi becomes cheap:

Ax =
∑

i λi(Axi).
⇒ the FO oracle for (∗) is computationally cheap

6.171

yt+1 ∈ Argminy {φ(y) : y ∈ Conv{0 ∪ Yt}} (∗)
Yt ⊂ K+: finite set containing yt = [xt; rt] and D+[x+

t ; 1], with
x+
t ∈ Argminx {〈∇f(xt), x〉 : x ∈ K, ‖x‖ ≤ 1}

• For example, with f(x) = 1
2
‖Ax − b‖2

2, solving (∗) reduces to solving kt = Card(Yt)-
dimensional convex quadratic problem

min
λ∈Rkt

{
1
2
λTQtλ+ 2qTt λ : λ ≥ 0,

∑
j λj ≤ 1

}
,

Qt = [xTi A
TAxj]i,j

(!)

where xj, 1 ≤ j ≤ kt, are the x-components of the points from Yt.
⇒Assuming that Yt is a set of moderate cardinality (say, few tens) obtained from Yt−1

by discarding several “old” points and adding the new points yt = [xt; rt], D+[x+
t ; 1],

updating
[Qt−1, qt−1] 7→ [Qt, qt]

basically reduces to computing matrix-vector products Axt and Ax+
t . After Qt, qt are

computed, (!) can be solved “in no time” by an IPM.
Note: Axt is computed anyway when computing ∇f(xt).

6.172

How It Works: TV-based Image Reconstruction

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

True image Blurred noisy Recovery
image, 40% noise

Bundle CndG, 256× 256 image (65,536 variables)
Recovery in 13 CndG iterations, CPU time 50.0 sec

Error removal: 98.5%, φ(y13)/φ(0) <4.6e-5

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

True image Blurred noisy Recovery
image, 40% noise

Bundle CndG, 512× 512 image (262,144 variables)
Recovery in 18 CndG iterations, CPU time 370.3 sec

Error removal: 98.2%, φ(y18)/φ(0) <1.3e-4
Platform: 2× 3.40 GHz CPU with 16.0 GB RAM and
64-bit operating system

6.173

♠ Note: We used 15-element bundle, adding to it at step t the points yt =
[xt; rt], D+[x+

t ; 1] and [∇f(xt); TV(∇f(xt))] and removing (up to) 3 old points accord-
ing to “first in — first out.” Adding [∇f(xt); TV(∇f(xt))] to the bundle dramatically
accelerated the algorithm.

6.174

How It Works:
Low Rank Matrix Completion

♠ Problem:
Opt = min

x∈Rn×n

{
0.1‖x‖+ ‖x− a‖2

F

}[
• ‖ · ‖: nuclear norm • ‖ · ‖F : Frobenius norm • a = x̄+ ξ

Rank(x̄) ≈
√
n, ‖x̄‖ ≈

√
2n/π, ‖ξ‖F ≈ 0.1‖x̄‖F with i.i.d. Gaussian ξij

]
• Required relative inaccuracy 0.01

n Method CPU, sec Iterations Relative inaccuracy
128 CndG 4.5 42 <1.3e-6

IPM 2675.0 31 <1.e-10
1024 CndG 44.2 31 <0.008

IPM not tested
4096 CndG 1997.7 87 <0.01

IPM not tested

8192† CndG 1364.5 36 <0.01
IPM not tested

† Rank(x̄) = 32
Platform: 2× 3.40 GHz CPU with 16.0 GB RAM and 64-bit operating system
Note: CPU time in 8192×8192 example is less than needed to compute just 3 full svd’s
of a 8192× 8192 matrix ⇒The time taken by 36 steps of CndG is less than needed to
perform just 3 steps of the simplest proximal algorithm, or just 2 steps of Nesterov’s
Fast Gradient method for Composite minimization!

6.175

Conditional Gradients for Nonsmooth Convex Minimization

Source: Cox, B., Juditsky, A., Nemirovski, A. Dual subgradient algorithms for large-scale nonsmooth

learning problems. Mathematical Programming Series B 148:1-2 (2014), 143-180.

https://www2.isye.gatech.edu/~nemirovs/CoxJudNem.pdf

♠ Situation and goal: Given convex compact domain X represented by Linear Mini-
mization Oracle, we want to solve convex program

Opt = min
x∈X

f(x)

where f is a Lipschitz continuous convex function.
Difficulty: Since X is given by LMO, it is problematic to use proximal algorithms; and
since f can be nonsmooth, Conditional Gradient cannot be applied directly.
Remedy: Use Fenchel-type representation

f(x) = maxy∈Y
[
xT [Ay + a]− φ(y)

]
[• Y : convex set • φ(·) : Y → R: convex function]

Note: Fenchel-type representation is a special case of what we called saddle point
representation

f(x) = max
y∈Y

φ(x, y) [φ : convex-concave]

Note: Whenever f : Rn → R∪{+∞} is a proper (i.e., with a nonempty domain) convex
lower semicontinuous function, it admits Fenchel (a.k.a. Legendre) representation

f(x) = supy∈Rn

[
xTy − f∗(y)

][
f∗(y) = supx∈Rn

[
yTx− f(x)

]
: Fenchel dual of f

f∗ is convex proper lower semicontinuous, [f∗]∗ = f

]
6.176

f(x) = supy∈Rn

[
xTy − f∗(y)

][
f∗(y) = supx∈Rn

[
yTx− f(x)

]
: Fenchel dual of f

f∗ is convex proper lower semicontinuous along with f , and [f∗]∗ = f

]
Note: Fenchel dual “exists in the nature,” but, aside of a handful of simple cases, is
not available in closed form or in the form allowing for a cheap FO oracle.
In contrast, Fenchel type representations typically are readily available.
Example A. When f(x) = ‖Bx − b‖, computing f∗(y) reduces to solving a nontrivial
convex problem

f∗(y) = sup
x

[
yTx− ‖Bx− b‖

]
,

while Fenchel-type representation is immediate:

f(x) = max
y:‖y‖∗≤1

yT(Bx− b) = max
y:‖y‖∗≤1

[
xT [BTy]︸ ︷︷ ︸

Ay

− bTy︸︷︷︸
φ(y)

]
Example B. When summing up two convex functions with known Fenchel duals, the
Fenchel dual of the sum is given by difficult to compute “inf-convolution”:

[f + h]∗(y) = inf
v

[f∗(v) + h∗(y − v)]

In contrast, when summing up two convex functions with known Fenchel-type represen-
tations, a Fenchel-type representation of the sum is immediate:

fi(x) = supyi∈Yi
[
xT [Aiyi + ai]− gi(yi)

]
, 1 ≤ i ≤ m

⇒
∑

i
fi(x) = sup

y=[y1;...;ym]∈Y1 × ...× Ym︸ ︷︷ ︸
Y

[∑
i
xT [Aiyi + ai]︸ ︷︷ ︸
xT [Ay+a]

−
∑

i
gi(yi)︸ ︷︷ ︸

φ(y)

]

6.177

Opt = min
x∈X

f(x) (P)

Assumption: We know Fenchel-type representation of f :

f(x) = max
y∈Y

[
xT [Ay + a]− φ(y)

]
where convex compact set Y admits a computation-friendly proximal setup, and φ is a
Lipschitz continuous convex function given by First Order oracle.
⇒Problem of interest (P) is the primal problem associated with the convex-concave
saddle point problem

Opt = min
x∈X

max
y∈Y

[
xT [Ay + a]− φ(y)

]
.

The dual problem, in minimization form, is

[−Opt =] min
y∈Y

[
g(y) := −min

x∈X
xT [Ay + a] + φ(y)

]
(D)

and LMO for X induces First Order oracle for G: given y ∈ Y and computing

xy ∈ Argmin
x∈X

xT [Ay + a],

we have
g(y) = −xTy [Ay + a] + φ(y)
g′(y) := −ATxy + φ′(y) is a subgradient of g at y

⇒we can solve (D) by proximal-type First Order algorithm!

6.178

Opt = minx∈X

{
f(x) = max

y∈Y

[
xT [Ay + a]− φ(y)

]}
(P)

−Opt = miny∈Y

{
g(y) = −min

x∈X
xT [Ay + a] + φ(y)

}
(D)

Question: How to recover a good approximate solution to (P) from information accu-
mulated when solving (D)?
Answer: Use accuracy certificates!

6.179

Accuracy Certificates

Let Z be a convex compact set, F (·) be a vector field on Z. Consider an N-step
algorithm which operates with Z and F by generating sequence of search points zi ∈ Z,
i ≤ N along with the sequence F (zi), i ≤ N , of the values of F along the search points.
• Collection F = {zi ∈ Z, F (zi)}Ni=1 is called the the execution protocol of the algorithm

• An accuracy certificate for execution protocol F is an N-dimensional vector λ of
nonnegative weights λi summing up to 1

• The resolution of (F , λ) on Z is defined as

Res(F , λ|Z) = max
z∈Z

[∑N

i=1
λi〈F (zi), zi − z〉

]
Observation: Every one of considered so far deterministic proximal First Order algo-
rithms for convex minimization and convex-concave saddle point problems worked with
some vector field F on a convex compact set Z and in N steps generated some execution
protocol F = {zi ∈ Z, F (zi)}Ni=1 and accuracy certificate λ. When specifying approximate
solution as

zN =
∑
i

λizi,

the resolution Res(F , λ|Z) was an upper bound on inaccuracy of zN resulting in efficiency
estimates we got.

6.180

Example: Subgradient/Mirror Descent for convex minimization problem minz∈Z f(z)
works with subgradient vector field F (z) = f ′(z) of the objective and ensures that

∀z ∈ Z :
∑N

i=1 γi〈F (zi), zi − z〉 ≤ Θ +
∑N

i=1 γ
2
i ‖F (zi)‖2

∗
[Θ : capacity of X w.r.t. DGF in question]

⇒ Res(F , λ|Z) := max
z∈Z

∑
iλi〈F (zi), zi − z〉 ≤ R :=

Θ +
∑N

i=1 γ
2
i ‖F (zi)‖2

∗∑N
i=1 γi[

λi = γi/
∑N

j=1 γj

] (!)

Our efficiency estimate for SD/MD was yielded by (!) combined with the relation
f(
∑

i λizi)− f(z∗) ≤
∑

i λi[f(zi)− f(z∗)] ≤
∑

i λi〈F (zi), zi − z∗〉 ≤ Res(F , λ|Z). (!!)

where z∗ ∈ ArgminZ f .
Note:
• SD/MD ensures (!) independently of what is the origin of the vector filed F the method
works with
• (!!) holds independently of where the execution protocol with F = f ′ and the accuracy
certificate come from.

♠ In retrospect, all we cared about when designing algorithms like SD, MD, or their
bundle versions, or Mirror Prox, etc., was generating execution protocol and accuracy
certificate with as small as possible guaranteed resolution.

6.181

Opt = minx∈X
{
f(x) = maxy∈Y

[
xT [Ay + a]− φ(y)

]}
(P)

−Opt = miny∈Y
{
g(y) = −minx∈X xT [Ay + a] + φ(y)

}
(D)

♠ Fact: Assume we are solving (D) by First Order method producing in N steps
execution protocol

G = {yi ∈ Y, g′(yi) = −ATxyi + φ′(yi)}Ni=1
xyi ∈ Argminx∈X x

T [Ayi + a]

and accuracy certificate λ. Let us set

xN =
N∑
i=1

λixyi, y
N =

N∑
i=1

λiyi.

Then xN is feasible for (P) and solves (P) within accuracy Res := Res(G, λ|Y).

6.182

Proof of Fact: Let x ∈ X and y ∈ Y . We have

Res ≥
∑

i λi〈−ATxyi + φ′(yi), yi − y〉 =
∑

iλi〈xyi, A[y − yi]〉+
∑

i
λi〈φ′(yi), yi − y〉︸ ︷︷ ︸
≥
∑

i
λiφ(yi)−φ(y)

≥
∑

i λi〈xyi, Ay + a〉 −
∑

i λi 〈xyi, Ayi + a〉︸ ︷︷ ︸
≤〈x,Ayi+a〉

+
∑

i
λiφ(yi)︸ ︷︷ ︸
≥φ(yN)

−φ(y)

≥
∑

i λi〈xyi, Ay + a〉 −
∑

i λi〈x,Ay + a〉+ φ(yN)− φ(y)
= 〈xN , Ay + a〉 − 〈x,AyN + a〉+ φ(yN)− φ(y)
⇒ 〈xN , Ay + a〉 − φ(y) ≤ Res + 〈x,AyN + a〉 − φ(yN)

The resulting inequality holds true for all x ∈ X and y ∈ Y , implying that

f(xN) = maxy∈Y
[
〈xN , Ay + a〉 − φ(y)

]
≤ Res + minx∈X

[
〈x,AyN + a〉 − φ(yN)

]
≤ Res + maxy∈Y minx∈X [〈x,Ay + a〉 − φ(y)] = Res + Opt.

6.183

Problems with Convex Structure
[Section 5.6 of Lecture Notes]

♠ Proximal point algorithms for Convex Minimization/Convex-concave Saddle Points
can be extended to other problems with convex structure
— Convex Nash Equilibrium problems
— Variational Inequalities with monotone operators
— Convex Equilibria
• What follows is “standartized” description of problems with convex structure (with
Convex Equilibria omitted to save time), where the domain of the problem Z is a
nonempty convex compact set in Euclidean space E

6.184

♣ A. Convex Minimization – minimizing Lipschtz continuous convex function over Z
A.0. instance: Opt = minz∈Z f(z) with convex Lipschitz continuous f . We identify
instance with f and associate with it
A.1. solution set Z∗(f) = ArgminZ f(z) – the set of all minimizers of f on Z
A.2. accuracy measure (“residual in terms of the objective”)

εMin[z|f] = f(z)−minu∈Z f(u)
quantifying the quality of a candidate solution z ∈ Z
A.3. vector field – a bounded vector-valued function gf(z) : Z → E:

gf(z) ∈ ∂f(z)
is a subgradient of f at z

6.185

♣ B. Convex-concave Saddle Point – finding saddle point of Lipschitz continuous
convex-concave function on Z = X × Y
B.0. instance: minx∈X maxy∈Y f(z := [x; y]) with convex-concave Lipschitz continuous
f . We identify instance with f and associate with it
B.1. solution set Z∗(f) – the set of all saddle points of f on X × Y
B.2. accuracy measure (“duality gap”)

εSP[(x, y)|f] = f(x)− f(y),
= [f(x)−Opt(P)] + [Opt(D)− f(y)]

Opt(P) = minx∈X
[
f(x) := f(x) = maxy∈Y f(x, y)

]
(P)

Opt(D) = maxy∈Y
[
f(y) = f(y) = minx∈X f(x, y)

]
(D)

[Opt(P) = Opt(D)]
quantifying the quality of a candidate solution (x, y) ∈ Z.
B.3. vector field – a bounded vector-valued function gf(x, y) : Z → E:

gf(x, y) = [gfx(x, y); gfy(x, y)] ∈ ∂xf(x, y)× ∂y[−f(x, y)], (x, y) ∈ Z,
Note: Convex Minimization is a special case of Convex-concave Saddle point – one
where Y is a singleton.

6.186

♣ C. Convex Nash Equilibrium.
♣ The story: K players are making their choices, the choice of j-th player being a point
zj in convex compact subset Zj of Euclidean space Ej. The block-vector z = [z1; ...; zK]
of players’ choices specifies the losses of the players, the loss of j-th of them being a
given function fj(z). A Nash Equilibrium is a vector z∗ = [z∗1; z∗2; ...; z∗K] ∈ Z := Z1×...×ZK
of choices of the players such that no player can reduce her loss by changing her choice,
provided that other players stick to their choices:

z∗j ∈ Argminzj∈Zj fj(z
∗
1; ...; z∗j−1; zj; z∗j+1; ...; z∗K), j = 1,2, ...,K.

The Nash Equilibrium problem is to find Nash Equilibrium, given the domain Z of the
problem (along with its representation as a direct product of nonempty convex compact
sets Zj) and the loss functions fj(z) : Z → R of the players.
♠ Notation:
• [z]j ∈ Ej: j-th block in block-vector z ∈ E1 × ...× EK (selection of j-th player)
• [z]j: vector obtained from z by eliminating j-th block
. Example: z = [z1; z2; z3] ⇒ [z]2 = z2, [z]2 = [z1; z3]
• fj([z]j, [z]j): alternative notation for fj(z)

♣ We always assume that for all j, functions fj(z) are Lipschitz continuous on Z
♣ Nash Equilibrium problem is called convex, if
— for every j, the function fj([z]j, [z]j) is convex in [z]j ∈ Zj and concave in [z]j ∈ Zj =
Z1 × ...×Zj−1 ×Zj+1 × ...×ZK, and

— the sum
∑K

j=1 fj(z) of losses is convex on Z.

6.187

♠ Illustration: Antagonistic pair interactions. Consider K-player Nash Equilibrium
problem where every two players i, j (i 6= j) are playing antagonistic convex-concave
game with cost function fij:

fij(zi, zj) : Zi ×Zj → R : Lipschitz continuous convex-concave, fij(zi, zj) = −fji(zj, zi)
and the loss of a player is her total loss in interactions with other player plus her convex
Lipschitz continuous “setup cost:”:

fi([z]i, [z]i) = θi(zi) +
∑
j 6=i

fij(zi, zj) [θi(zi) : setup cost of ith player]

This clearly is a convex Nash Equilibrium problem (since the sum of losses is the convex
function

∑
i θi(zi)).

6.188

♠ Note: Nash Equilibrium is the standard way to model the behaviour of “egotistic”
interacting players. We would say that beyond purely antagonistic interactions, plain
egotism can be extremely counter-productive.
Example: There are two playeirs selecting points, z1 and z2, in Z1 = Z2 = [0,1], the loss
functions being

f1(z1, z1) = z2 − εz1, f2(z1, z2) = z1 − εz2 [0 < ε� 1]

The associated Nash Equilibrium problem is convex and has the unique equilibrium
z1 = z2 = 1, the equilibrium loss of every one of the players being 1−ε. Were the players
less egotistic, they would select z! = z2 = 0, resulting in zero losses for every one of
them.

6.189

♣ C. Convex Nash Equilibrium (continued)
C.0. instance of convex Nash Equilibrium problem is direct product representation
Z = Z1 × ... × ZK of the domain and the collection f = (f1(z), ..., fK(z)) of player’s
loss functions satisfying the above convexity-concavity and continuity restrictions. We
identify instance with f and associate with it
C.1. solution set Z∗(f) – the set of all Nash equilibria:

Z∗(f) = {z∗ ∈ Z : [z∗]j ∈ Argminzj∈Zj fj(zj, [z
∗]j), j = 1, ...,K}

C.2. accuracy measure (“incentive”) εNash[z|f] =
∑K

j=1

[
fj([z]j, [z]j)−minz′j∈Zj fj(z

′
j, [z]j)

]
• εNash[z|f] is the total, over players, incentive for player j to deviate from her choice
zj, provided that all other players j′ stick to their choices zj ′
• incentive is well-defined and nonnegative on Z and is zero at a point z ∈ Z if and only
if z is Nash equilibrium
C.3. vector field – a bounded vector-valued function gf(z) = [gf1(z); ...; gfK(z)] : Z → E =

E1 × ... × EK: gfj (z) ∈ ∂zjfj(zj, [z]j), j = 1, ...,K. Block gfj (z) in gf(z) is a subgradient of

convex function fj(·, [z]j) taken at zj

Note: Convex-concave saddle point problem minx∈X maxy∈Y φ(x, y) is just the “zero sum”
two-player convex Nash Equilibrium problem: set Z1 = X , Z2 = Y, f1(z1, z2) = φ(z!, z2),
f2(z1, z2) = −f1(z1, z2).

6.190

♣ D. Monotone Variational Inequality
♠ The story: A vector field f(z) : Z → E is called monotone, if

〈f(z)− f(z′), z − z′〉 ≥ 0 ∀z, z′ ∈ Z.
Variational Inequality VI(f,Z) associated with Z and monotone vector field f is

find z∗ ∈ Z : 〈f(z), z − z∗〉 ≥ 0 ∀z ∈ Z VI(f,Z)

• Note: the above z∗ are called weak solutions, as opposed to strong solutions z∗ ∈ Z :
〈f(z∗), z − z∗〉 ≥ 0 ∀z ∈ Z.
• By monotonicity, strong solutions are weak ones; the inverse is true, e.g., when f is
monotone and continuous.

6.191

♣ D. Monotone Variational Inequality (continued)
B.0. instance: monotone and bounded vector field f : Z → E. We identify instance
with f and associate with it
B.1. solution set Z∗(f) – the set of all weak solutions to VI(f,Z):

Z∗(f) = {z∗ ∈ Z : 〈f(z), z − z∗〉 ≥ 0 ∀z ∈ Z};
B.2. accuracy measure (“dual gap function”)

εVI[z|f] = supy∈Z〈f(y), z − y〉
• Accuracy measure is well-defined, nonnegative, and is zero at z if and only if z ∈ Z∗(f);
B.3. vector field gf associated with f is f itself

6.192

Problems with Convex Structure
Main descriptive results, I

Theorem A. Let Z be a nonempty convex compact subset of Euclidean space E. Then
(i) When F (z) : Z → E is a monotone vector field, the set of weak solutions to VI(F,Z)
is nonempty, convex, and closed.
(ii) Let f be an instance of problem with convex structure, Z being the domain of the
problem. The associated with f vector field gf(z) : Z → E is monotone, and the set of
weak solutions to VI(gf ,Z) is exactly the set Z∗(f) of solutions to the instance (so that
the latter is nonempty, convex and closed).

6.193

Main descriptive results, II

♣ Let
• Z be a nonempty closed and bounded convex set in Euclidean space E
• F (z) : Z → E be a vector field
• N be a positive integer, z1, ..., zN be a sequence in Z, and µ = [µ1; ...;µN] be a proba-
bilistic vector (i.e., µ ≥ 0 and

∑
i µi = 1).

These data define the residual

Res[{zi}, F, µ|Z] =

[
max
z∈Z

∑N
i=1 µi〈F (xi), zi − z〉

]
+

Theorem B. Given the above data, assume that F is monotone, and let
zN =

∑N
i=1 µizi

Then
(i) One has

εVI[z
N |F] ≤ Res[{zi}, F, µ|Z] (!)

(ii) When F = gf is the vector field associated with instance f of problem with convex
structure on the domain Z, (!) can be refined to get

• εMin[zN |f] ≤ Res[{zi}, F, µ|Z], f is a Convex Minimization instance
• εSP[zN |f] ≤ Res[{zi}, F, µ|Z], f is a Convex-concave Saddle Point instance
• εNash[zN |f] ≤ Res[{zi}, F, µ|Z], f is a convex Nash Equilibrium instance

6.194

Problems with Convex Structure
Main algorithmic results

♣ Situation: Let
• Z be a nonempty convex compact subset of Euclidean space E
• ‖ · ‖, ω(·) be a proximal setup for Z; let Θ and Ω be the ω-capacity and ω-diameter of
Z:

Θ = max
z,z′∈Z

[
ω(z′)− ω(z)− 〈z′ − z,∇ω(z)〉

]
& Ω =

√
2Θ

• F (z) : Z → E be a bounded vector field: ‖F (z)‖∗ ≤MF <∞ for all z ∈ Z
We assume that F is represented by Stochastic Oracle O.

At t-th call to O, z ∈ Z being the input, the oracle returns vector G(z, ξt) ∈ E,
where ξ1, ξ2, ... is i.i.d. sequence of “oracle noises.” We assume that for every
z ∈ Z it holds

Eξ{G(z, ξ)} = F (z) & Eξ{‖G(z, ξ)− F (z)‖2
∗} ≤ σ2

F [0 ≤ σF <∞]

6.195

♠ Mirror Descent Theorem In the situation in question, let λt ≥ 0 and γt > 0 be
deterministic sequences such that

λ1/γ1 ≤ λ2/γ2 ≤ λ3/γ3 ≤ ...
and let z1 ∈ Z be a deterministic starting point.
Consider the Mirror Descent recurrence

zt+1 = Proxzt(γtG(zt, ξt)).

Given positive integer N such that S(N) :=
∑N

t=1 λt > 0, let us set

zN = S−1(N)
N∑
t=1

λtzt =
N∑
t=1

µNt zt [µNt = λt/S(N),1 ≤ t ≤ N]

Then

E
{

Res[{zt}Nt=1, F, µ
N |Z]

}
≤ S−1(N)

λNΩ2

2γN
+ [M2

F + σ2
F]

N∑
t=1

λtγt + 2σFΩ

√√√√ N∑
t=1

λ2
t

 . (MD)

Note: With properly selected λt and γt, (MD) results in upper bounds of the N-step
residual which, when combined with Theorem B, yield all our previous efficiency esti-
mates for deterministic and stochastic Mirror Descent.

6.196

‖F (z)‖∗ ≤MF <∞∀z ∈ Z ⇒

E
{

Res[{zt}Nt=1, F, µ
N |Z]

}
≤

1∑N
t=1 λt

λNΩ2

2γN
+ [M2

F + σ2
F]

N∑
t=1

λtγt + 2σFΩ

√√√√ N∑
t=1

λ2
t

 . (MD)

Example: Given N ≥ 2, setting

γt = Ω√
M2

F+σ2
F

√
t
, λt =

{
0, t ≤ N/2
γt, t ≥ N/2

the right hand side of (MD) becomes

O(1)

√
M2

F + σ2
FΩ

√
N

,

resulting in the standard efficiency estimates for Mirror Descent and Mirror Descent
Stochastic Approximation as applied to Convex Minimization and Convex-concave Sad-
dle Points.
• The bound on the residual remains intact when the rule for λt’s is replaced with the
simplest rule λt ≡ 1. With this rule, zN is just the average of z1, ..., zN .

6.197

Problems with Convex Structure
Main algorithmic results (continued)

♣ Situation: Let
• Z be a nonempty convex compact subset of Euclidean space E
• ‖ · ‖, ω(·) be a proximal setup for Z; let Θ and Ω be the ω-capacity and ω-diameter of
Z:

Θ = max
z,z′∈Z

[
ω(z′)− ω(z)− 〈z′ − z,∇ω(z)〉

]
& ω =

√
2Θ

• F (z) : Z → E be a bounded vector field satisfying

‖F (z)− F (z′)‖∗ ≤MF + LF‖z − z′‖ ∀z, z′ ∈ Z [0 ≤MF , LF <∞]

Example: F = F1 + F2 is the sum of two fields: just bounded (‖F1(z)‖∗ ≤MF/2, z ∈ Z)
and Lipschitz continuous (‖F2(z)− F2(z′)‖∗ ≤ LF‖z − z′‖, z, z′ ∈ Z)
We assume that F is represented by Stochastic Oracle O.

At t-th call to O, z ∈ Z being the input, the oracle returns vector G(z, ξt) ∈ E,
where ξ1, ξ2, ... is i.i.d. sequence of “oracle noises.” We assume that for every
z ∈ Z it holds

Eξ{G(z, ξ)} = F (z) & Eξ{‖G(z, ξ)− F (z)‖2
∗} ≤ σ2

F [0 ≤ σF <∞]

6.198

♠ Mirror Prox Theorem In the situation in question, let λt ≥ 0 and γt > 0 be deter-
ministic sequences such that

γt ≤ 1
2LF

, t = 1,2, ... & λ1/γ1 ≤ λ2/γ2 ≤ λ3/γ3 ≤ ...

and let z1 ∈ Z be a deterministic starting point.
Consider the Mirror Prox recurrence

wt = Proxzt(γtG(zt, ξ2t−1)) & zt+1 = Proxzt(γtG(wt, ξ2t))

Given positive integer N such that S(N) :=
∑N

t=1 λt > 0, let us set

zN = S−1(N)
N∑
t=1

λtwt =
N∑
t=1

µNt wt [µNt = λt/S(N),1 ≤ t ≤ N]

Then

E
{

Res[{wt}Nt=1, F, µ
N |Z]

}
≤

1

S(N)

λNΩ2

2γN
+ [M2

F + 2σ2
F]

N∑
t=1

γtλt + 2σFΩ

√√√√ N∑
t=1

λ2
t

 . (MP)

Note: With properly selected λt and γt, (MP) results in upper bounds of the N-step
residual which, when combined with Theorem B, yield all our previous efficiency esti-
mates for deterministic and stochastic Mirror Prox.

6.199

‖F (z)− F (z′)‖∗ ≤MF + LF‖z − z′‖ ∀z, z′ ∈ Z & γt ≤ 1
2LF
∀t & λ1/γ1 ≤ λ2/γ2 ≤ λ3/γ3 ≤ ...

⇒ E
{

Res[{zt}Nt=1, F, µ
N |Z]

}
≤

1
N∑
t=1

λt

[
λNΩ2

2γN
+ [M2

F + 2σ2
F]
∑N

t=1
γtλt + 2σFΩ

√∑N

t=1
λ2
t

]
.

(MP)
Example A: When F is just bounded (i.e., LF = 0), (MP) is the same as (MD).

Example B: When F is Lipschitz continuous (i.e., MF = 0, LF > 0) and O is determin-

istic (i.e., σF = 0), setting γt ≡ 1
2LF

, λt ≡ 1, the right hand side of (MP) becomes

O(1)
LFΩ2

N
,

resulting in O(1/N) efficiency estimate known to us from the results on Mirror Prox as
applied to Convex-concave Saddle Point problem with smooth cost function.
♠ “Fine-tuning” the right hand side in (MP) by selecting γt’s (λt ≡ 1 always works well)
allows to adjust the algorithm to MF , LF , σF . Specifically, with stepsizes

γt = min

[
1

2LF
,

Ω√
M2

F + σ2
F

√
t

]
we get for N ≥ 1 (that is, after 2N steps of MP):

E
{

Res[{wt}Nt=1, F, µ
N |Z]

}
≤ O(1)

LFΩ2

N
, 1 ≤ N ≤ L2

FΩ2

M2
F+σ2

F√
M2

F+σ2
FΩ√

N
, otherwise

We see that when 0 < M2
F + σ2

F � LFΩ2, algorithms eventually switches from “fast”

O(1/N) convergence rate to “slow” O(1/
√
N) rate.

6.200

